Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtrALT2 Structured version   Visualization version   GIF version

Theorem sspwtrALT2 39058
Description: Short predicate calculus proof of the right-to-left implication of dftr4 4757. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 39049, which is the virtual deduction proof sspwtr 39048 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtrALT2 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)

Proof of Theorem sspwtrALT2
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . 6 (𝐴 ⊆ 𝒫 𝐴 → (𝑦𝐴𝑦 ∈ 𝒫 𝐴))
21adantld 483 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦 ∈ 𝒫 𝐴))
3 elpwi 4168 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
42, 3syl6 35 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦𝐴))
5 simpl 473 . . . . 5 ((𝑧𝑦𝑦𝐴) → 𝑧𝑦)
65a1i 11 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝑦))
7 ssel 3597 . . . 4 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
84, 6, 7syl6c 70 . . 3 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
98alrimivv 1856 . 2 (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
10 dftr2 4754 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
119, 10sylibr 224 1 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481  wcel 1990  wss 3574  𝒫 cpw 4158  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-tr 4753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator