| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subtr2 | Structured version Visualization version GIF version | ||
| Description: Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| subtr.1 | ⊢ Ⅎ𝑥𝐴 |
| subtr.2 | ⊢ Ⅎ𝑥𝐵 |
| subtr2.3 | ⊢ Ⅎ𝑥𝜓 |
| subtr2.4 | ⊢ Ⅎ𝑥𝜒 |
| subtr2.5 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| subtr2.6 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| subtr2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → (𝜓 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subtr.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | subtr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2776 | . . . 4 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 4 | subtr2.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | subtr2.4 | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
| 6 | 4, 5 | nfbi 1833 | . . . 4 ⊢ Ⅎ𝑥(𝜓 ↔ 𝜒) |
| 7 | 3, 6 | nfim 1825 | . . 3 ⊢ Ⅎ𝑥(𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 8 | eqeq1 2626 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 9 | subtr2.5 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 10 | 9 | bibi1d 333 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) |
| 11 | 8, 10 | imbi12d 334 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ↔ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)))) |
| 12 | subtr2.6 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 13 | 1, 7, 11, 12 | vtoclgf 3264 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → (𝜓 ↔ 𝜒))) |
| 14 | 13 | adantr 481 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → (𝜓 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |