| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version | ||
| Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| suc0 | ⊢ suc ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 5729 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
| 2 | uncom 3757 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
| 3 | un0 3967 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
| 4 | 1, 2, 3 | 3eqtri 2648 | 1 ⊢ suc ∅ = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ∪ cun 3572 ∅c0 3915 {csn 4177 suc csuc 5725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-suc 5729 |
| This theorem is referenced by: df1o2 7572 axdc3lem4 9275 |
| Copyright terms: Public domain | W3C validator |