| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl231anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl12anc.1 | ⊢ (𝜑 → 𝜓) |
| syl12anc.2 | ⊢ (𝜑 → 𝜒) |
| syl12anc.3 | ⊢ (𝜑 → 𝜃) |
| syl22anc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl231anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) |
| Ref | Expression |
|---|---|
| syl231anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl12anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl12anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 554 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl12anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl22anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl231anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) | |
| 9 | 3, 4, 5, 6, 7, 8 | syl131anc 1339 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: syl232anc 1353 isosctr 24551 axeuclid 25843 dalawlem3 35159 dalawlem6 35162 cdlemd7 35491 cdleme18c 35580 cdlemi 36108 cdlemk7 36136 cdlemk11 36137 cdlemk7u 36158 cdlemk11u 36159 cdlemk19xlem 36230 cdlemk55u1 36253 cdlemk56 36259 |
| Copyright terms: Public domain | W3C validator |