| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anl2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| syl3anl2.1 | ⊢ (𝜑 → 𝜒) |
| syl3anl2.2 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl3anl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3anl2.2 | . . . 4 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 3 | 2 | ex 450 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜏 → 𝜂)) |
| 4 | 1, 3 | syl3an2 1360 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → (𝜏 → 𝜂)) |
| 5 | 4 | imp 445 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: syl3anr2 1379 chfacfscmulcl 20662 chfacfscmulgsum 20665 chfacfpmmulcl 20666 chfacfpmmulgsum 20669 cpmadumatpolylem1 20686 cpmadumatpolylem2 20687 cpmadumatpoly 20688 chcoeffeqlem 20690 2atlt 34725 |
| Copyright terms: Public domain | W3C validator |