| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (𝜑 → 𝜒) |
| syl3an2.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1264 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜑 → (𝜃 → 𝜏))) |
| 5 | 4 | 3imp 1256 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
| Copyright terms: Public domain | W3C validator |