| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylg | Structured version Visualization version GIF version | ||
| Description: A syllogism combined with generalization. Inference associated with sylgt 1749. General form of alrimih 1751. (Contributed by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| sylg.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
| sylg.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylg | ⊢ (𝜑 → ∀𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylg.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
| 2 | sylg.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 2 | alimi 1739 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥𝜒) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∀𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1722 ax-4 1737 |
| This theorem is referenced by: alrimih 1751 aev2 1986 trint 4768 ssrel 5207 kmlem1 8972 bnj1476 30917 bnj1533 30922 bj-ax12ig 32615 axc11n11 32672 bj-modalbe 32678 bj-ax9-2 32891 |
| Copyright terms: Public domain | W3C validator |