MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trint Structured version   Visualization version   GIF version

Theorem trint 4768
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
trint (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr3 4756 . . . . 5 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
21ralbii 2980 . . . 4 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝑥)
3 df-ral 2917 . . . . . 6 (∀𝑦𝑥 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦𝑥))
43ralbii 2980 . . . . 5 (∀𝑥𝐴𝑦𝑥 𝑦𝑥 ↔ ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝑥))
5 ralcom4 3224 . . . . 5 (∀𝑥𝐴𝑦(𝑦𝑥𝑦𝑥) ↔ ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
64, 5bitri 264 . . . 4 (∀𝑥𝐴𝑦𝑥 𝑦𝑥 ↔ ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
72, 6sylbb 209 . . 3 (∀𝑥𝐴 Tr 𝑥 → ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
8 ralim 2948 . . 3 (∀𝑥𝐴 (𝑦𝑥𝑦𝑥) → (∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
97, 8sylg 1750 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
10 dftr3 4756 . . 3 (Tr 𝐴 ↔ ∀𝑦 𝐴𝑦 𝐴)
11 df-ral 2917 . . . 4 (∀𝑦 𝐴𝑦 𝐴 ↔ ∀𝑦(𝑦 𝐴𝑦 𝐴))
12 vex 3203 . . . . . . 7 𝑦 ∈ V
1312elint2 4482 . . . . . 6 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
14 ssint 4493 . . . . . 6 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
1513, 14imbi12i 340 . . . . 5 ((𝑦 𝐴𝑦 𝐴) ↔ (∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
1615albii 1747 . . . 4 (∀𝑦(𝑦 𝐴𝑦 𝐴) ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
1711, 16bitri 264 . . 3 (∀𝑦 𝐴𝑦 𝐴 ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
1810, 17bitri 264 . 2 (Tr 𝐴 ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
199, 18sylibr 224 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  wcel 1990  wral 2912  wss 3574   cint 4475  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437  df-int 4476  df-tr 4753
This theorem is referenced by:  tctr  8616  intwun  9557  intgru  9636  dfon2lem8  31695
  Copyright terms: Public domain W3C validator