![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdif2 | Structured version Visualization version GIF version |
Description: Two ways to express symmetric difference. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
symdif2 | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3584 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3584 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | orbi12i 543 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
4 | elun 3753 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) | |
5 | xor 935 | . . 3 ⊢ (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) | |
6 | 3, 4, 5 | 3bitr4i 292 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
7 | 6 | abbi2i 2738 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∖ cdif 3571 ∪ cun 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 |
This theorem is referenced by: mbfeqalem 23409 |
Copyright terms: Public domain | W3C validator |