MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifid Structured version   Visualization version   GIF version

Theorem symdifid 4599
Description: Symmetric difference with self yields the empty class. (Contributed by Scott Fenton, 25-Apr-2012.)
Assertion
Ref Expression
symdifid (𝐴𝐴) = ∅

Proof of Theorem symdifid
StepHypRef Expression
1 df-symdif 3844 . 2 (𝐴𝐴) = ((𝐴𝐴) ∪ (𝐴𝐴))
2 difid 3948 . . 3 (𝐴𝐴) = ∅
32, 2uneq12i 3765 . 2 ((𝐴𝐴) ∪ (𝐴𝐴)) = (∅ ∪ ∅)
4 un0 3967 . 2 (∅ ∪ ∅) = ∅
51, 3, 43eqtri 2648 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  cdif 3571  cun 3572  csymdif 3843  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator