![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpcoma | Structured version Visualization version GIF version |
Description: Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
tpcoma | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4267 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | 1 | uneq1i 3763 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶}) |
3 | df-tp 4182 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
4 | df-tp 4182 | . 2 ⊢ {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶}) | |
5 | 2, 3, 4 | 3eqtr4i 2654 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∪ cun 3572 {csn 4177 {cpr 4179 {ctp 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-pr 4180 df-tp 4182 |
This theorem is referenced by: tpcomb 4286 tppreqb 4336 nb3grpr2 26285 nb3gr2nb 26286 frgr3v 27139 3vfriswmgr 27142 1to3vfriswmgr 27144 |
Copyright terms: Public domain | W3C validator |