MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3gOLD Structured version   Visualization version   GIF version

Theorem tpid3gOLD 4306
Description: Obsolete proof of tpid3g 4305 as of 30-Apr-2021. Closed theorem form of tpid3 4307. This proof was automatically generated from the virtual deduction proof tpid3gVD 39077 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
tpid3gOLD (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3gOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 3215 . 2 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
2 3mix3 1232 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
32a1i 11 . . . . . 6 (𝐴𝐵 → (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)))
4 abid 2610 . . . . . 6 (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)} ↔ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
53, 4syl6ibr 242 . . . . 5 (𝐴𝐵 → (𝑥 = 𝐴𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}))
6 dftp2 4231 . . . . . 6 {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}
76eleq2i 2693 . . . . 5 (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)})
85, 7syl6ibr 242 . . . 4 (𝐴𝐵 → (𝑥 = 𝐴𝑥 ∈ {𝐶, 𝐷, 𝐴}))
9 eleq1 2689 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴}))
108, 9mpbidi 231 . . 3 (𝐴𝐵 → (𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
1110exlimdv 1861 . 2 (𝐴𝐵 → (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
121, 11mpd 15 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1036   = wceq 1483  wex 1704  wcel 1990  {cab 2608  {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator