![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid3gOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of tpid3g 4305 as of 30-Apr-2021. Closed theorem form of tpid3 4307. This proof was automatically generated from the virtual deduction proof tpid3gVD 39077 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tpid3gOLD | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 3215 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
2 | 3mix3 1232 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴))) |
4 | abid 2610 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)} ↔ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)) | |
5 | 3, 4 | syl6ibr 242 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)})) |
6 | dftp2 4231 | . . . . . 6 ⊢ {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)} | |
7 | 6 | eleq2i 2693 | . . . . 5 ⊢ (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴)}) |
8 | 5, 7 | syl6ibr 242 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ {𝐶, 𝐷, 𝐴})) |
9 | eleq1 2689 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴})) | |
10 | 8, 9 | mpbidi 231 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝐴 ∈ {𝐶, 𝐷, 𝐴})) |
11 | 10 | exlimdv 1861 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ {𝐶, 𝐷, 𝐴})) |
12 | 1, 11 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1036 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 {ctp 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 df-tp 4182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |