| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpidm13 | Structured version Visualization version GIF version | ||
| Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| tpidm13 | ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tprot 4284 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴} | |
| 2 | tpidm12 4290 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eqtr3i 2646 | 1 ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 {cpr 4179 {ctp 4181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: fntpb 6473 hashtpg 13267 |
| Copyright terms: Public domain | W3C validator |