MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem5 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem5 27084
Description: Lemma for trlsegvdeg 27087. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem5 (𝜑 → dom (iEdg‘𝑌) = {(𝐹𝑁)})

Proof of Theorem trlsegvdeglem5
StepHypRef Expression
1 trlsegvdeg.iy . . 3 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
21dmeqd 5326 . 2 (𝜑 → dom (iEdg‘𝑌) = dom {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3 fvex 6201 . . 3 (𝐼‘(𝐹𝑁)) ∈ V
4 dmsnopg 5606 . . 3 ((𝐼‘(𝐹𝑁)) ∈ V → dom {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {(𝐹𝑁)})
53, 4mp1i 13 . 2 (𝜑 → dom {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {(𝐹𝑁)})
62, 5eqtrd 2656 1 (𝜑 → dom (iEdg‘𝑌) = {(𝐹𝑁)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cop 4183   class class class wbr 4653  dom cdm 5114  cres 5116  cima 5117  Fun wfun 5882  cfv 5888  (class class class)co 6650  0cc0 9936  ...cfz 12326  ..^cfzo 12465  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Trailsctrls 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896
This theorem is referenced by:  trlsegvdeglem7  27086  trlsegvdeg  27087
  Copyright terms: Public domain W3C validator