MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskss Structured version   Visualization version   GIF version

Theorem tskss 9580
Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tskss ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴) → 𝐵𝑇)

Proof of Theorem tskss
StepHypRef Expression
1 elpw2g 4827 . . . 4 (𝐴𝑇 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
21adantl 482 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
3 tskpwss 9574 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
43sseld 3602 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵 ∈ 𝒫 𝐴𝐵𝑇))
52, 4sylbird 250 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵𝐴𝐵𝑇))
653impia 1261 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴) → 𝐵𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wss 3574  𝒫 cpw 4158  Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-tsk 9571
This theorem is referenced by:  tskin  9581  tsksn  9582  tsksuc  9584  tsk0  9585  tskr1om2  9590  tskint  9607
  Copyright terms: Public domain W3C validator