| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex2 | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
| Ref | Expression |
|---|---|
| uniex2 | ⊢ ∃𝑦 𝑦 = ∪ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfun 6950 | . . . 4 ⊢ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 2 | eluni 4439 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) | |
| 3 | 2 | imbi1i 339 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 4 | 3 | albii 1747 | . . . . 5 ⊢ (∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 5 | 4 | exbii 1774 | . . . 4 ⊢ (∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 6 | 1, 5 | mpbir 221 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) |
| 7 | 6 | bm1.3ii 4784 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥) |
| 8 | dfcleq 2616 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) | |
| 9 | 8 | exbii 1774 | . 2 ⊢ (∃𝑦 𝑦 = ∪ 𝑥 ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) |
| 10 | 7, 9 | mpbir 221 | 1 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∪ cuni 4436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-uni 4437 |
| This theorem is referenced by: uniex 6953 |
| Copyright terms: Public domain | W3C validator |