MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vss Structured version   Visualization version   GIF version

Theorem vss 4012
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
vss (V ⊆ 𝐴𝐴 = V)

Proof of Theorem vss
StepHypRef Expression
1 ssv 3625 . . 3 𝐴 ⊆ V
21biantrur 527 . 2 (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
3 eqss 3618 . 2 (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
42, 3bitr4i 267 1 (V ⊆ 𝐴𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  Vcvv 3200  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-in 3581  df-ss 3588
This theorem is referenced by:  vdif0  4037
  Copyright terms: Public domain W3C validator