![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vtoclefex | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
vtoclefex.1 | ⊢ Ⅎ𝑥𝜑 |
vtoclefex.3 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtoclefex | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclefex.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | vtoclefex.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
3 | 2 | ax-gen 1722 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → 𝜑) |
4 | vtoclegft 3280 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) | |
5 | 1, 3, 4 | mp3an23 1416 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
This theorem is referenced by: finxpreclem2 33227 |
Copyright terms: Public domain | W3C validator |