Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtoclefex Structured version   Visualization version   GIF version

Theorem vtoclefex 33181
Description: Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020.)
Hypotheses
Ref Expression
vtoclefex.1 𝑥𝜑
vtoclefex.3 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtoclefex (𝐴𝑉𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem vtoclefex
StepHypRef Expression
1 vtoclefex.1 . 2 𝑥𝜑
2 vtoclefex.3 . . 3 (𝑥 = 𝐴𝜑)
32ax-gen 1722 . 2 𝑥(𝑥 = 𝐴𝜑)
4 vtoclegft 3280 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
51, 3, 4mp3an23 1416 1 (𝐴𝑉𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481   = wceq 1483  wnf 1708  wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  finxpreclem2  33227
  Copyright terms: Public domain W3C validator