Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem4 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem4 33365
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem4 𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑢

Proof of Theorem wl-ax11-lem4
StepHypRef Expression
1 ancom 466 . 2 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦))
2 nfna1 2029 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
3 wl-ax11-lem3 33364 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑢 𝑢 = 𝑦)
42, 3nfan1 2068 . 2 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦)
51, 4nfxfr 1779 1 𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  wal 1481  wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246  ax-wl-11v 33361
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710
This theorem is referenced by:  wl-ax11-lem8  33369
  Copyright terms: Public domain W3C validator