| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xor3 | Structured version Visualization version GIF version | ||
| Description: Two ways to express "exclusive or." (Contributed by NM, 1-Jan-2006.) |
| Ref | Expression |
|---|---|
| xor3 | ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.18 371 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
| 2 | 1 | con2bii 347 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| 3 | 2 | bicomi 214 | 1 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: nbbn 373 pm5.15 933 nbi2 936 xorass 1468 hadnot 1541 nabbi 2896 symdifass 3853 notzfaus 4840 nmogtmnf 27625 nmopgtmnf 28727 limsucncmpi 32444 aiffnbandciffatnotciffb 41071 axorbciffatcxorb 41072 abnotbtaxb 41082 |
| Copyright terms: Public domain | W3C validator |