MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor3 Structured version   Visualization version   GIF version

Theorem xor3 372
Description: Two ways to express "exclusive or." (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
xor3 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))

Proof of Theorem xor3
StepHypRef Expression
1 pm5.18 371 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))
21con2bii 347 . 2 ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
32bicomi 214 1 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  nbbn  373  pm5.15  933  nbi2  936  xorass  1468  hadnot  1541  nabbi  2896  symdifass  3853  notzfaus  4840  nmogtmnf  27625  nmopgtmnf  28727  limsucncmpi  32444  aiffnbandciffatnotciffb  41071  axorbciffatcxorb  41072  abnotbtaxb  41082
  Copyright terms: Public domain W3C validator