| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notzfaus | Structured version Visualization version GIF version | ||
| Description: In the Separation Scheme zfauscl 4783, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction by violating this requirement. (Contributed by NM, 8-Feb-2006.) |
| Ref | Expression |
|---|---|
| notzfaus.1 | ⊢ 𝐴 = {∅} |
| notzfaus.2 | ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) |
| Ref | Expression |
|---|---|
| notzfaus | ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notzfaus.1 | . . . . . 6 ⊢ 𝐴 = {∅} | |
| 2 | 0ex 4790 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4309 | . . . . . 6 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2864 | . . . . 5 ⊢ 𝐴 ≠ ∅ |
| 5 | n0 3931 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 6 | 4, 5 | mpbi 220 | . . . 4 ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
| 7 | biimt 350 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦))) | |
| 8 | iman 440 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦)) | |
| 9 | notzfaus.2 | . . . . . . . 8 ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) | |
| 10 | 9 | anbi2i 730 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦)) |
| 11 | 8, 10 | xchbinxr 325 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 12 | 7, 11 | syl6bb 276 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝑦 ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 13 | xor3 372 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 14 | 12, 13 | sylibr 224 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 15 | 6, 14 | eximii 1764 | . . 3 ⊢ ∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 16 | exnal 1754 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 17 | 15, 16 | mpbi 220 | . 2 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 18 | 17 | nex 1731 | 1 ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |