MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndinf Structured version   Visualization version   GIF version

Theorem zfcndinf 9440
Description: Axiom of Infinity ax-inf 8535, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing theorem el 4847 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.)
Assertion
Ref Expression
zfcndinf 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem zfcndinf
StepHypRef Expression
1 el 4847 . . 3 𝑤 𝑥𝑤
2 nfv 1843 . . . . . 6 𝑤 𝑥𝑦
3 nfe1 2027 . . . . . . . 8 𝑤𝑤(𝑥𝑤𝑤𝑦)
42, 3nfim 1825 . . . . . . 7 𝑤(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
54nfal 2153 . . . . . 6 𝑤𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
62, 5nfan 1828 . . . . 5 𝑤(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
76nfex 2154 . . . 4 𝑤𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
8 axinfnd 9428 . . . . 5 𝑦(𝑥𝑤 → (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
9819.37iv 1911 . . . 4 (𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
107, 9exlimi 2086 . . 3 (∃𝑤 𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
111, 10ax-mp 5 . 2 𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
12 elequ1 1997 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
13 elequ1 1997 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
1413anbi1d 741 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑤𝑤𝑦) ↔ (𝑥𝑤𝑤𝑦)))
1514exbidv 1850 . . . . . 6 (𝑧 = 𝑥 → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑥𝑤𝑤𝑦)))
1612, 15imbi12d 334 . . . . 5 (𝑧 = 𝑥 → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1716cbvalv 2273 . . . 4 (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
1817anbi2i 730 . . 3 ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1918exbii 1774 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
2011, 19mpbir 221 1 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-reg 8497  ax-inf 8535
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator