| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nic-ax | Unicode version | ||
| Description: Nicod's axiom derived
from the standard ones. See _Intro. to Math.
Phil._ by B. Russell, p. 152. Like meredith 1404, the usual axioms can be
derived from this and vice versa. Unlike meredith 1404, Nicod uses a
different connective ('nand'), so another form of modus ponens must be
used in proofs, e.g. |
| Ref | Expression |
|---|---|
| nic-ax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nannan 1291 |
. . . . 5
| |
| 2 | 1 | biimpi 186 |
. . . 4
|
| 3 | simpl 443 |
. . . . 5
| |
| 4 | 3 | imim2i 13 |
. . . 4
|
| 5 | imnan 411 |
. . . . . . 7
| |
| 6 | df-nan 1288 |
. . . . . . 7
| |
| 7 | 5, 6 | bitr4i 243 |
. . . . . 6
|
| 8 | con3 126 |
. . . . . . . 8
| |
| 9 | 8 | imim2d 48 |
. . . . . . 7
|
| 10 | imnan 411 |
. . . . . . . 8
| |
| 11 | con2b 324 |
. . . . . . . 8
| |
| 12 | df-nan 1288 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | 3bitr4ri 269 |
. . . . . . 7
|
| 14 | 9, 13 | syl6ibr 218 |
. . . . . 6
|
| 15 | 7, 14 | syl5bir 209 |
. . . . 5
|
| 16 | nanim 1292 |
. . . . 5
| |
| 17 | 15, 16 | sylib 188 |
. . . 4
|
| 18 | 2, 4, 17 | 3syl 18 |
. . 3
|
| 19 | pm4.24 624 |
. . . . 5
| |
| 20 | 19 | biimpi 186 |
. . . 4
|
| 21 | nannan 1291 |
. . . 4
| |
| 22 | 20, 21 | mpbir 200 |
. . 3
|
| 23 | 18, 22 | jctil 523 |
. 2
|
| 24 | nannan 1291 |
. 2
| |
| 25 | 23, 24 | mpbir 200 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
| This theorem is referenced by: nic-imp 1440 nic-idlem1 1441 nic-idlem2 1442 nic-id 1443 nic-swap 1444 nic-luk1 1456 lukshef-ax1 1459 |
| Copyright terms: Public domain | W3C validator |