| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 0fin | GIF version | ||
| Description: The empty set is finite. (Contributed by SF, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| 0fin | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 4402 | . . 3 ⊢ 0c ∈ Nn | |
| 2 | eqid 2353 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | el0c 4421 | . . . 4 ⊢ (∅ ∈ 0c ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 200 | . . 3 ⊢ ∅ ∈ 0c |
| 5 | eleq2 2414 | . . . 4 ⊢ (n = 0c → (∅ ∈ n ↔ ∅ ∈ 0c)) | |
| 6 | 5 | rspcev 2955 | . . 3 ⊢ ((0c ∈ Nn ∧ ∅ ∈ 0c) → ∃n ∈ Nn ∅ ∈ n) |
| 7 | 1, 4, 6 | mp2an 653 | . 2 ⊢ ∃n ∈ Nn ∅ ∈ n |
| 8 | elfin 4420 | . 2 ⊢ (∅ ∈ Fin ↔ ∃n ∈ Nn ∅ ∈ n) | |
| 9 | 7, 8 | mpbir 200 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 ∈ wcel 1710 ∃wrex 2615 ∅c0 3550 Nn cnnc 4373 0cc0c 4374 Fin cfin 4376 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-uni 3892 df-int 3927 df-0c 4377 df-nnc 4379 df-fin 4380 |
| This theorem is referenced by: snfi 4431 ssfin 4470 nchoicelem18 6306 |
| Copyright terms: Public domain | W3C validator |