| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eltp | GIF version | ||
| Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltp.1 | ⊢ A ∈ V |
| Ref | Expression |
|---|---|
| eltp | ⊢ (A ∈ {B, C, D} ↔ (A = B ∨ A = C ∨ A = D)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltp.1 | . 2 ⊢ A ∈ V | |
| 2 | eltpg 3769 | . 2 ⊢ (A ∈ V → (A ∈ {B, C, D} ↔ (A = B ∨ A = C ∨ A = D))) | |
| 3 | 1, 2 | ax-mp 8 | 1 ⊢ (A ∈ {B, C, D} ↔ (A = B ∨ A = C ∨ A = D)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ w3o 933 = wceq 1642 ∈ wcel 1710 Vcvv 2859 {ctp 3739 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-tp 3743 |
| This theorem is referenced by: dftp2 3772 tpid1 3829 tpid2 3830 tpid3 3832 |
| Copyright terms: Public domain | W3C validator |