| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > fvsnun2 | GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5447. (Contributed by set.mm contributors, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 | ⊢ A ∈ V |
| fvsnun.2 | ⊢ B ∈ V |
| fvsnun.3 | ⊢ G = ({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) |
| Ref | Expression |
|---|---|
| fvsnun2 | ⊢ (D ∈ (C ∖ {A}) → (G ‘D) = (F ‘D)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 5342 | . 2 ⊢ (D ∈ (C ∖ {A}) → ((G ↾ (C ∖ {A})) ‘D) = (G ‘D)) | |
| 2 | fvsnun.3 | . . . . . 6 ⊢ G = ({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) | |
| 3 | 2 | reseq1i 4930 | . . . . 5 ⊢ (G ↾ (C ∖ {A})) = (({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) ↾ (C ∖ {A})) |
| 4 | resundir 4982 | . . . . 5 ⊢ (({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) ↾ (C ∖ {A})) = (({〈A, B〉} ↾ (C ∖ {A})) ∪ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A}))) | |
| 5 | disjdif 3622 | . . . . . . . 8 ⊢ ({A} ∩ (C ∖ {A})) = ∅ | |
| 6 | fvsnun.1 | . . . . . . . . . 10 ⊢ A ∈ V | |
| 7 | fvsnun.2 | . . . . . . . . . 10 ⊢ B ∈ V | |
| 8 | 6, 7 | fnsn 5152 | . . . . . . . . 9 ⊢ {〈A, B〉} Fn {A} |
| 9 | fnresdisj 5193 | . . . . . . . . 9 ⊢ ({〈A, B〉} Fn {A} → (({A} ∩ (C ∖ {A})) = ∅ ↔ ({〈A, B〉} ↾ (C ∖ {A})) = ∅)) | |
| 10 | 8, 9 | ax-mp 8 | . . . . . . . 8 ⊢ (({A} ∩ (C ∖ {A})) = ∅ ↔ ({〈A, B〉} ↾ (C ∖ {A})) = ∅) |
| 11 | 5, 10 | mpbi 199 | . . . . . . 7 ⊢ ({〈A, B〉} ↾ (C ∖ {A})) = ∅ |
| 12 | residm 4994 | . . . . . . 7 ⊢ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A})) = (F ↾ (C ∖ {A})) | |
| 13 | 11, 12 | uneq12i 3416 | . . . . . 6 ⊢ (({〈A, B〉} ↾ (C ∖ {A})) ∪ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A}))) = (∅ ∪ (F ↾ (C ∖ {A}))) |
| 14 | uncom 3408 | . . . . . 6 ⊢ (∅ ∪ (F ↾ (C ∖ {A}))) = ((F ↾ (C ∖ {A})) ∪ ∅) | |
| 15 | un0 3575 | . . . . . 6 ⊢ ((F ↾ (C ∖ {A})) ∪ ∅) = (F ↾ (C ∖ {A})) | |
| 16 | 13, 14, 15 | 3eqtri 2377 | . . . . 5 ⊢ (({〈A, B〉} ↾ (C ∖ {A})) ∪ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A}))) = (F ↾ (C ∖ {A})) |
| 17 | 3, 4, 16 | 3eqtri 2377 | . . . 4 ⊢ (G ↾ (C ∖ {A})) = (F ↾ (C ∖ {A})) |
| 18 | 17 | fveq1i 5329 | . . 3 ⊢ ((G ↾ (C ∖ {A})) ‘D) = ((F ↾ (C ∖ {A})) ‘D) |
| 19 | fvres 5342 | . . 3 ⊢ (D ∈ (C ∖ {A}) → ((F ↾ (C ∖ {A})) ‘D) = (F ‘D)) | |
| 20 | 18, 19 | syl5eq 2397 | . 2 ⊢ (D ∈ (C ∖ {A}) → ((G ↾ (C ∖ {A})) ‘D) = (F ‘D)) |
| 21 | 1, 20 | eqtr3d 2387 | 1 ⊢ (D ∈ (C ∖ {A}) → (G ‘D) = (F ‘D)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ∖ cdif 3206 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 {csn 3737 〈cop 4561 ↾ cres 4774 Fn wfn 4776 ‘cfv 4781 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-fv 4795 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |