| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nulge | GIF version | ||
| Description: If the empty set is a finite cardinal, then it is a maximal element. (Contributed by SF, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| nulge | ⊢ ((∅ ∈ Nn ∧ A ∈ V) → ⟪A, ∅⟫ ∈ ≤fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcnul1 4452 | . . . . 5 ⊢ (A +c ∅) = ∅ | |
| 2 | 1 | eqcomi 2357 | . . . 4 ⊢ ∅ = (A +c ∅) |
| 3 | addceq2 4384 | . . . . . 6 ⊢ (x = ∅ → (A +c x) = (A +c ∅)) | |
| 4 | 3 | eqeq2d 2364 | . . . . 5 ⊢ (x = ∅ → (∅ = (A +c x) ↔ ∅ = (A +c ∅))) |
| 5 | 4 | rspcev 2955 | . . . 4 ⊢ ((∅ ∈ Nn ∧ ∅ = (A +c ∅)) → ∃x ∈ Nn ∅ = (A +c x)) |
| 6 | 2, 5 | mpan2 652 | . . 3 ⊢ (∅ ∈ Nn → ∃x ∈ Nn ∅ = (A +c x)) |
| 7 | 6 | adantr 451 | . 2 ⊢ ((∅ ∈ Nn ∧ A ∈ V) → ∃x ∈ Nn ∅ = (A +c x)) |
| 8 | opklefing 4448 | . . 3 ⊢ ((A ∈ V ∧ ∅ ∈ Nn ) → (⟪A, ∅⟫ ∈ ≤fin ↔ ∃x ∈ Nn ∅ = (A +c x))) | |
| 9 | 8 | ancoms 439 | . 2 ⊢ ((∅ ∈ Nn ∧ A ∈ V) → (⟪A, ∅⟫ ∈ ≤fin ↔ ∃x ∈ Nn ∅ = (A +c x))) |
| 10 | 7, 9 | mpbird 223 | 1 ⊢ ((∅ ∈ Nn ∧ A ∈ V) → ⟪A, ∅⟫ ∈ ≤fin ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2615 ∅c0 3550 ⟪copk 4057 Nn cnnc 4373 +c cplc 4375 ≤fin clefin 4432 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-opk 4058 df-1c 4136 df-pw1 4137 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-sik 4192 df-ssetk 4193 df-addc 4378 df-lefin 4440 |
| This theorem is referenced by: lenltfin 4469 |
| Copyright terms: Public domain | W3C validator |