| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > snprss2 | GIF version | ||
| Description: A singleton is a subset of an unordered pair. (Contributed by SF, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| snprss2 | ⊢ {A} ⊆ {B, A} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprss1 4120 | . 2 ⊢ {A} ⊆ {A, B} | |
| 2 | prcom 3798 | . 2 ⊢ {A, B} = {B, A} | |
| 3 | 1, 2 | sseqtri 3303 | 1 ⊢ {A} ⊆ {B, A} |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3257 {csn 3737 {cpr 3738 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-ss 3259 df-pr 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |