| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 0i1 | Unicode version | ||
| Description: Antecedent of 0 on Sasaki conditional. |
| Ref | Expression |
|---|---|
| 0i1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 |
. 2
| |
| 2 | ax-a2 31 |
. . 3
| |
| 3 | df-f 42 |
. . . . 5
| |
| 4 | 3 | con2 67 |
. . . 4
|
| 5 | 4 | lor 70 |
. . 3
|
| 6 | 2, 5 | ax-r2 36 |
. 2
|
| 7 | or1 104 |
. 2
| |
| 8 | 1, 6, 7 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-t 41 df-f 42 df-i1 44 |
| This theorem is referenced by: oa3-2lema 978 oa3-2to2s 990 |
| Copyright terms: Public domain | W3C validator |