| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3-2lema | Unicode version | ||
| Description: Lemma for 3-OA(2). Equivalence with substitution into 4-OA. |
| Ref | Expression |
|---|---|
| oa3-2lema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a3 32 |
. . . . 5
| |
| 2 | an0 108 |
. . . . . . . . . . 11
| |
| 3 | 2 | ax-r5 38 |
. . . . . . . . . 10
|
| 4 | ax-a2 31 |
. . . . . . . . . 10
| |
| 5 | or0 102 |
. . . . . . . . . . 11
| |
| 6 | 0i1 273 |
. . . . . . . . . . . 12
| |
| 7 | 6 | lan 77 |
. . . . . . . . . . 11
|
| 8 | an1 106 |
. . . . . . . . . . 11
| |
| 9 | 5, 7, 8 | 3tr 65 |
. . . . . . . . . 10
|
| 10 | 3, 4, 9 | 3tr 65 |
. . . . . . . . 9
|
| 11 | an0 108 |
. . . . . . . . . . 11
| |
| 12 | 11 | ax-r5 38 |
. . . . . . . . . 10
|
| 13 | ax-a2 31 |
. . . . . . . . . 10
| |
| 14 | or0 102 |
. . . . . . . . . . 11
| |
| 15 | 6 | lan 77 |
. . . . . . . . . . 11
|
| 16 | an1 106 |
. . . . . . . . . . 11
| |
| 17 | 14, 15, 16 | 3tr 65 |
. . . . . . . . . 10
|
| 18 | 12, 13, 17 | 3tr 65 |
. . . . . . . . 9
|
| 19 | 10, 18 | 2an 79 |
. . . . . . . 8
|
| 20 | 19 | lor 70 |
. . . . . . 7
|
| 21 | oridm 110 |
. . . . . . 7
| |
| 22 | 20, 21 | ax-r2 36 |
. . . . . 6
|
| 23 | 22 | lor 70 |
. . . . 5
|
| 24 | 1, 23 | ax-r2 36 |
. . . 4
|
| 25 | 24 | lan 77 |
. . 3
|
| 26 | 25 | lor 70 |
. 2
|
| 27 | 26 | lan 77 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 |
| This theorem is referenced by: oa3-2to2s 990 |
| Copyright terms: Public domain | W3C validator |