| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 1oa | Unicode version | ||
| Description: Orthoarguesian-like law
with |
| Ref | Expression |
|---|---|
| 1oa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lear 161 |
. . 3
| |
| 2 | an12 81 |
. . . . 5
| |
| 3 | lear 161 |
. . . . . 6
| |
| 4 | 3 | lerr 150 |
. . . . 5
|
| 5 | 2, 4 | bltr 138 |
. . . 4
|
| 6 | leid 148 |
. . . 4
| |
| 7 | 5, 6 | lel2or 170 |
. . 3
|
| 8 | 1, 7 | letr 137 |
. 2
|
| 9 | df-i1 44 |
. . . 4
| |
| 10 | 9 | lan 77 |
. . 3
|
| 11 | an12 81 |
. . . . . 6
| |
| 12 | 11 | ax-r1 35 |
. . . . 5
|
| 13 | coman1 185 |
. . . . 5
| |
| 14 | 12, 13 | bctr 181 |
. . . 4
|
| 15 | coman1 185 |
. . . . 5
| |
| 16 | 15 | comcom2 183 |
. . . 4
|
| 17 | 14, 16 | fh2c 477 |
. . 3
|
| 18 | df-i2 45 |
. . . . . . 7
| |
| 19 | anor3 90 |
. . . . . . . 8
| |
| 20 | 19 | ax-r1 35 |
. . . . . . 7
|
| 21 | 18, 20 | 2an 79 |
. . . . . 6
|
| 22 | comid 187 |
. . . . . . . . . . 11
| |
| 23 | 22 | comcom3 454 |
. . . . . . . . . 10
|
| 24 | comanr2 465 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | fh1r 473 |
. . . . . . . . 9
|
| 26 | dff 101 |
. . . . . . . . . . 11
| |
| 27 | 26 | ax-r1 35 |
. . . . . . . . . 10
|
| 28 | anass 76 |
. . . . . . . . . . 11
| |
| 29 | anidm 111 |
. . . . . . . . . . . 12
| |
| 30 | 29 | lan 77 |
. . . . . . . . . . 11
|
| 31 | 28, 30 | ax-r2 36 |
. . . . . . . . . 10
|
| 32 | 27, 31 | 2or 72 |
. . . . . . . . 9
|
| 33 | ax-a2 31 |
. . . . . . . . . 10
| |
| 34 | or0 102 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | ax-r2 36 |
. . . . . . . . 9
|
| 36 | 25, 32, 35 | 3tr 65 |
. . . . . . . 8
|
| 37 | 36 | ran 78 |
. . . . . . 7
|
| 38 | anass 76 |
. . . . . . 7
| |
| 39 | anass 76 |
. . . . . . 7
| |
| 40 | 37, 38, 39 | 3tr2 64 |
. . . . . 6
|
| 41 | 21, 40 | ax-r2 36 |
. . . . 5
|
| 42 | an12 81 |
. . . . . 6
| |
| 43 | anass 76 |
. . . . . . . . 9
| |
| 44 | 43 | ax-r1 35 |
. . . . . . . 8
|
| 45 | anidm 111 |
. . . . . . . . . 10
| |
| 46 | 45, 18 | ax-r2 36 |
. . . . . . . . 9
|
| 47 | df-i2 45 |
. . . . . . . . 9
| |
| 48 | 46, 47 | 2an 79 |
. . . . . . . 8
|
| 49 | 44, 48 | ax-r2 36 |
. . . . . . 7
|
| 50 | 49 | lan 77 |
. . . . . 6
|
| 51 | 42, 50 | ax-r2 36 |
. . . . 5
|
| 52 | 41, 51 | 2or 72 |
. . . 4
|
| 53 | 39 | ax-r1 35 |
. . . . . . . 8
|
| 54 | lea 160 |
. . . . . . . . . 10
| |
| 55 | 54 | lerr 150 |
. . . . . . . . 9
|
| 56 | 55 | lecom 180 |
. . . . . . . 8
|
| 57 | 53, 56 | bctr 181 |
. . . . . . 7
|
| 58 | 4 | lecom 180 |
. . . . . . . 8
|
| 59 | 2, 58 | bctr 181 |
. . . . . . 7
|
| 60 | 57, 59 | fh3 471 |
. . . . . 6
|
| 61 | 60 | lan 77 |
. . . . 5
|
| 62 | coman2 186 |
. . . . . . . 8
| |
| 63 | 62 | comcom2 183 |
. . . . . . 7
|
| 64 | oran 87 |
. . . . . . . 8
| |
| 65 | 64 | ax-r1 35 |
. . . . . . 7
|
| 66 | 63, 65 | cbtr 182 |
. . . . . 6
|
| 67 | 57, 59 | com2an 484 |
. . . . . 6
|
| 68 | 66, 67 | fh3 471 |
. . . . 5
|
| 69 | anass 76 |
. . . . 5
| |
| 70 | 61, 68, 69 | 3tr1 63 |
. . . 4
|
| 71 | 52, 70 | ax-r2 36 |
. . 3
|
| 72 | 10, 17, 71 | 3tr 65 |
. 2
|
| 73 | 8, 72, 47 | le3tr1 140 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: 1oai1 821 1oaiii 823 distoa 944 |
| Copyright terms: Public domain | W3C validator |