| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > distoa | Unicode version | ||
| Description: Derivation in OM of OA, assuming OA distributive law oadistd 1023. |
| Ref | Expression |
|---|---|
| distoa.1 |
|
| distoa.2 |
|
| distoa.3 |
|
| distoa.4 |
|
| Ref | Expression |
|---|---|
| distoa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oa 820 |
. . 3
| |
| 2 | 2oath1 826 |
. . . 4
| |
| 3 | lear 161 |
. . . 4
| |
| 4 | 2, 3 | bltr 138 |
. . 3
|
| 5 | 1, 4 | le2or 168 |
. 2
|
| 6 | distoa.4 |
. . . . 5
| |
| 7 | distoa.1 |
. . . . . 6
| |
| 8 | distoa.2 |
. . . . . . 7
| |
| 9 | distoa.3 |
. . . . . . 7
| |
| 10 | 8, 9 | 2or 72 |
. . . . . 6
|
| 11 | 7, 10 | 2an 79 |
. . . . 5
|
| 12 | 7, 8 | 2an 79 |
. . . . . 6
|
| 13 | 7, 9 | 2an 79 |
. . . . . 6
|
| 14 | 12, 13 | 2or 72 |
. . . . 5
|
| 15 | 6, 11, 14 | 3tr2 64 |
. . . 4
|
| 16 | 15 | ax-r1 35 |
. . 3
|
| 17 | u12lem 771 |
. . . . 5
| |
| 18 | df-i0 43 |
. . . . 5
| |
| 19 | 17, 18 | ax-r2 36 |
. . . 4
|
| 20 | 19 | lan 77 |
. . 3
|
| 21 | 16, 20 | ax-r2 36 |
. 2
|
| 22 | oridm 110 |
. 2
| |
| 23 | 5, 21, 22 | le3tr2 141 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |