| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vded11 | Unicode version | ||
| Description: A 3-variable theorem. Experiment with weak deduction theorem. |
| Ref | Expression |
|---|---|
| 3vded11.1 |
|
| Ref | Expression |
|---|---|
| 3vded11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le1 146 |
. . 3
| |
| 2 | df-t 41 |
. . . . 5
| |
| 3 | ancom 74 |
. . . . . . . 8
| |
| 4 | anor2 89 |
. . . . . . . 8
| |
| 5 | 3, 4 | ax-r2 36 |
. . . . . . 7
|
| 6 | 5 | lor 70 |
. . . . . 6
|
| 7 | 6 | ax-r1 35 |
. . . . 5
|
| 8 | ax-a3 32 |
. . . . 5
| |
| 9 | 2, 7, 8 | 3tr 65 |
. . . 4
|
| 10 | 3vded11.1 |
. . . . 5
| |
| 11 | leo 158 |
. . . . . . . . 9
| |
| 12 | df-i1 44 |
. . . . . . . . . 10
| |
| 13 | 12 | ax-r1 35 |
. . . . . . . . 9
|
| 14 | 11, 13 | lbtr 139 |
. . . . . . . 8
|
| 15 | 14 | lelan 167 |
. . . . . . 7
|
| 16 | 15 | lelor 166 |
. . . . . 6
|
| 17 | df-i1 44 |
. . . . . . 7
| |
| 18 | 17 | ax-r1 35 |
. . . . . 6
|
| 19 | 16, 18 | lbtr 139 |
. . . . 5
|
| 20 | 10, 19 | lel2or 170 |
. . . 4
|
| 21 | 9, 20 | bltr 138 |
. . 3
|
| 22 | 1, 21 | lebi 145 |
. 2
|
| 23 | 22 | u1lemle2 715 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: 3vded13 816 |
| Copyright terms: Public domain | W3C validator |