| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vcom | Unicode version | ||
| Description: 3-variable commutation theorem. |
| Ref | Expression |
|---|---|
| 3vcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oran3 93 |
. . . . 5
| |
| 2 | 1 | ax-r1 35 |
. . . 4
|
| 3 | u1lem9ab 779 |
. . . . . 6
| |
| 4 | u1lem9ab 779 |
. . . . . 6
| |
| 5 | 3, 4 | le2or 168 |
. . . . 5
|
| 6 | 5 | lecom 180 |
. . . 4
|
| 7 | 2, 6 | bctr 181 |
. . 3
|
| 8 | 7 | comcom6 459 |
. 2
|
| 9 | 8 | comcom 453 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |