QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  3vcom Unicode version

Theorem 3vcom 813
Description: 3-variable commutation theorem.
Assertion
Ref Expression
3vcom ((a ->1 c) v (b ->1 c)) C ((a' ->1 c) ^ (b' ->1 c))

Proof of Theorem 3vcom
StepHypRef Expression
1 oran3 93 . . . . 5 ((a' ->1 c)' v (b' ->1 c)') = ((a' ->1 c) ^ (b' ->1 c))'
21ax-r1 35 . . . 4 ((a' ->1 c) ^ (b' ->1 c))' = ((a' ->1 c)' v (b' ->1 c)')
3 u1lem9ab 779 . . . . . 6 (a' ->1 c)' =< (a ->1 c)
4 u1lem9ab 779 . . . . . 6 (b' ->1 c)' =< (b ->1 c)
53, 4le2or 168 . . . . 5 ((a' ->1 c)' v (b' ->1 c)') =< ((a ->1 c) v (b ->1 c))
65lecom 180 . . . 4 ((a' ->1 c)' v (b' ->1 c)') C ((a ->1 c) v (b ->1 c))
72, 6bctr 181 . . 3 ((a' ->1 c) ^ (b' ->1 c))' C ((a ->1 c) v (b ->1 c))
87comcom6 459 . 2 ((a' ->1 c) ^ (b' ->1 c)) C ((a ->1 c) v (b ->1 c))
98comcom 453 1 ((a ->1 c) v (b ->1 c)) C ((a' ->1 c) ^ (b' ->1 c))
Colors of variables: term
Syntax hints:   C wc 3  'wn 4   v wo 6   ^ wa 7   ->1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator