| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vth1 | Unicode version | ||
| Description: A 3-variable theorem. Equivalent to OML. |
| Ref | Expression |
|---|---|
| 3vth1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor3 90 |
. . . . . . 7
| |
| 2 | 1 | lan 77 |
. . . . . 6
|
| 3 | 2 | ax-r1 35 |
. . . . 5
|
| 4 | anass 76 |
. . . . . 6
| |
| 5 | 4 | ax-r1 35 |
. . . . 5
|
| 6 | 3, 5 | ax-r2 36 |
. . . 4
|
| 7 | ancom 74 |
. . . . . . 7
| |
| 8 | omlan 448 |
. . . . . . 7
| |
| 9 | 7, 8 | ax-r2 36 |
. . . . . 6
|
| 10 | lear 161 |
. . . . . 6
| |
| 11 | 9, 10 | bltr 138 |
. . . . 5
|
| 12 | 11 | leran 153 |
. . . 4
|
| 13 | 6, 12 | bltr 138 |
. . 3
|
| 14 | leor 159 |
. . 3
| |
| 15 | 13, 14 | letr 137 |
. 2
|
| 16 | df-i2 45 |
. . . 4
| |
| 17 | ancom 74 |
. . . . 5
| |
| 18 | 17 | lor 70 |
. . . 4
|
| 19 | 16, 18 | ax-r2 36 |
. . 3
|
| 20 | 19 | ran 78 |
. 2
|
| 21 | df-i2 45 |
. 2
| |
| 22 | 15, 20, 21 | le3tr1 140 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: 3vth2 805 3vth3 806 |
| Copyright terms: Public domain | W3C validator |