| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vth2 | Unicode version | ||
| Description: A 3-variable theorem. Equivalent to OML. |
| Ref | Expression |
|---|---|
| 3vth2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3vth1 804 |
. . 3
| |
| 2 | lear 161 |
. . 3
| |
| 3 | 1, 2 | ler2an 173 |
. 2
|
| 4 | ax-a2 31 |
. . . . . 6
| |
| 5 | 4 | ax-r4 37 |
. . . . 5
|
| 6 | 5 | lan 77 |
. . . 4
|
| 7 | 3vth1 804 |
. . . 4
| |
| 8 | 6, 7 | bltr 138 |
. . 3
|
| 9 | lear 161 |
. . 3
| |
| 10 | 8, 9 | ler2an 173 |
. 2
|
| 11 | 3, 10 | lebi 145 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: 3vth4 807 |
| Copyright terms: Public domain | W3C validator |