| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vth5 | Unicode version | ||
| Description: A 3-variable theorem. |
| Ref | Expression |
|---|---|
| 3vth5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a3 32 |
. . 3
| |
| 2 | or12 80 |
. . . 4
| |
| 3 | comorr 184 |
. . . . . . 7
| |
| 4 | comorr 184 |
. . . . . . . 8
| |
| 5 | 4 | comcom2 183 |
. . . . . . 7
|
| 6 | 3, 5 | fh3 471 |
. . . . . 6
|
| 7 | ax-a3 32 |
. . . . . . . . 9
| |
| 8 | 7 | ax-r1 35 |
. . . . . . . 8
|
| 9 | oridm 110 |
. . . . . . . . 9
| |
| 10 | 9 | ax-r5 38 |
. . . . . . . 8
|
| 11 | 8, 10 | ax-r2 36 |
. . . . . . 7
|
| 12 | ancom 74 |
. . . . . . . . . 10
| |
| 13 | anor3 90 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | ax-r2 36 |
. . . . . . . . 9
|
| 15 | 14 | ax-r1 35 |
. . . . . . . 8
|
| 16 | 15 | lor 70 |
. . . . . . 7
|
| 17 | 11, 16 | 2an 79 |
. . . . . 6
|
| 18 | 6, 17 | ax-r2 36 |
. . . . 5
|
| 19 | 18 | lor 70 |
. . . 4
|
| 20 | 2, 19 | ax-r2 36 |
. . 3
|
| 21 | 1, 20 | ax-r2 36 |
. 2
|
| 22 | df-i2 45 |
. . 3
| |
| 23 | df-i2 45 |
. . . . . . . 8
| |
| 24 | 23 | ax-r1 35 |
. . . . . . 7
|
| 25 | ax-a1 30 |
. . . . . . 7
| |
| 26 | 24, 25 | ax-r2 36 |
. . . . . 6
|
| 27 | 26 | ran 78 |
. . . . 5
|
| 28 | 27 | lor 70 |
. . . 4
|
| 29 | 28 | ax-r1 35 |
. . 3
|
| 30 | 22, 29 | ax-r2 36 |
. 2
|
| 31 | df-i2 45 |
. . . 4
| |
| 32 | 23, 31 | 2an 79 |
. . 3
|
| 33 | 32 | lor 70 |
. 2
|
| 34 | 21, 30, 33 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: 3vth6 809 3vth7 810 |
| Copyright terms: Public domain | W3C validator |