| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vth7 | Unicode version | ||
| Description: A 3-variable theorem. |
| Ref | Expression |
|---|---|
| 3vth7 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i2 45 |
. . . . 5
| |
| 2 | df-i2 45 |
. . . . 5
| |
| 3 | 1, 2 | 2an 79 |
. . . 4
|
| 4 | anass 76 |
. . . . . . . . . 10
| |
| 5 | 4 | ax-r1 35 |
. . . . . . . . 9
|
| 6 | anor3 90 |
. . . . . . . . . 10
| |
| 7 | 6 | lan 77 |
. . . . . . . . 9
|
| 8 | an32 83 |
. . . . . . . . 9
| |
| 9 | 5, 7, 8 | 3tr2 64 |
. . . . . . . 8
|
| 10 | anidm 111 |
. . . . . . . . . 10
| |
| 11 | 10 | lan 77 |
. . . . . . . . 9
|
| 12 | 11 | ax-r1 35 |
. . . . . . . 8
|
| 13 | an4 86 |
. . . . . . . 8
| |
| 14 | 9, 12, 13 | 3tr 65 |
. . . . . . 7
|
| 15 | 14 | lor 70 |
. . . . . 6
|
| 16 | comanr2 465 |
. . . . . . . 8
| |
| 17 | 16 | comcom6 459 |
. . . . . . 7
|
| 18 | comanr2 465 |
. . . . . . . 8
| |
| 19 | 18 | comcom6 459 |
. . . . . . 7
|
| 20 | 17, 19 | fh3 471 |
. . . . . 6
|
| 21 | 15, 20 | ax-r2 36 |
. . . . 5
|
| 22 | 21 | ax-r1 35 |
. . . 4
|
| 23 | 3, 22 | ax-r2 36 |
. . 3
|
| 24 | 23 | lor 70 |
. 2
|
| 25 | 3vth5 808 |
. 2
| |
| 26 | df-i2 45 |
. . 3
| |
| 27 | ax-a3 32 |
. . 3
| |
| 28 | or12 80 |
. . 3
| |
| 29 | 26, 27, 28 | 3tr 65 |
. 2
|
| 30 | 24, 25, 29 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: 3vth8 811 |
| Copyright terms: Public domain | W3C validator |