| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vth9 | Unicode version | ||
| Description: A 3-variable theorem. |
| Ref | Expression |
|---|---|
| 3vth9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor3 90 |
. . . 4
| |
| 2 | 1 | ax-r1 35 |
. . 3
|
| 3 | df-i2 45 |
. . . 4
| |
| 4 | 3 | lan 77 |
. . 3
|
| 5 | 2, 4 | 2or 72 |
. 2
|
| 6 | df-i1 44 |
. 2
| |
| 7 | df-i2 45 |
. . . 4
| |
| 8 | df-i2 45 |
. . . . 5
| |
| 9 | anor3 90 |
. . . . . . . 8
| |
| 10 | 9 | ax-r1 35 |
. . . . . . 7
|
| 11 | ud2lem0c 278 |
. . . . . . 7
| |
| 12 | 10, 11 | 2an 79 |
. . . . . 6
|
| 13 | anandi 114 |
. . . . . . . 8
| |
| 14 | 13 | ax-r1 35 |
. . . . . . 7
|
| 15 | anass 76 |
. . . . . . . 8
| |
| 16 | 15 | ax-r1 35 |
. . . . . . 7
|
| 17 | 14, 16 | ax-r2 36 |
. . . . . 6
|
| 18 | 12, 17 | ax-r2 36 |
. . . . 5
|
| 19 | 8, 18 | 2or 72 |
. . . 4
|
| 20 | 7, 19 | ax-r2 36 |
. . 3
|
| 21 | or32 82 |
. . . 4
| |
| 22 | comanr1 464 |
. . . . . . . . 9
| |
| 23 | 22 | comcom6 459 |
. . . . . . . 8
|
| 24 | comorr2 463 |
. . . . . . . 8
| |
| 25 | 23, 24 | fh3 471 |
. . . . . . 7
|
| 26 | ancom 74 |
. . . . . . . . . 10
| |
| 27 | 26 | lor 70 |
. . . . . . . . 9
|
| 28 | or12 80 |
. . . . . . . . . 10
| |
| 29 | oridm 110 |
. . . . . . . . . . 11
| |
| 30 | 29 | lor 70 |
. . . . . . . . . 10
|
| 31 | 28, 30 | ax-r2 36 |
. . . . . . . . 9
|
| 32 | 27, 31 | 2an 79 |
. . . . . . . 8
|
| 33 | ancom 74 |
. . . . . . . 8
| |
| 34 | 32, 33 | ax-r2 36 |
. . . . . . 7
|
| 35 | 25, 34 | ax-r2 36 |
. . . . . 6
|
| 36 | 35 | ax-r5 38 |
. . . . 5
|
| 37 | ax-a2 31 |
. . . . 5
| |
| 38 | 36, 37 | ax-r2 36 |
. . . 4
|
| 39 | 21, 38 | ax-r2 36 |
. . 3
|
| 40 | 20, 39 | ax-r2 36 |
. 2
|
| 41 | 5, 6, 40 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |