| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > biao | Unicode version | ||
| Description: Equivalence to biconditional. |
| Ref | Expression |
|---|---|
| biao |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leao1 162 |
. . . . 5
| |
| 2 | 1 | df2le2 136 |
. . . 4
|
| 3 | 2 | ax-r1 35 |
. . 3
|
| 4 | anor3 90 |
. . . 4
| |
| 5 | 1 | lecon 154 |
. . . . . 6
|
| 6 | oridm 110 |
. . . . . . 7
| |
| 7 | 6 | df-le1 130 |
. . . . . 6
|
| 8 | 5, 7 | ler2an 173 |
. . . . 5
|
| 9 | lear 161 |
. . . . . . 7
| |
| 10 | 9 | df-le2 131 |
. . . . . 6
|
| 11 | 10 | df-le1 130 |
. . . . 5
|
| 12 | 8, 11 | lebi 145 |
. . . 4
|
| 13 | 4, 12 | ax-r2 36 |
. . 3
|
| 14 | 3, 13 | 2or 72 |
. 2
|
| 15 | dfb 94 |
. 2
| |
| 16 | dfb 94 |
. 2
| |
| 17 | 14, 15, 16 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: mlaconj4 844 |
| Copyright terms: Public domain | W3C validator |