| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > bi1o1a | Unicode version | ||
| Description: Equivalence to biconditional. |
| Ref | Expression |
|---|---|
| bi1o1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lea 160 |
. . . . . . 7
| |
| 2 | leo 158 |
. . . . . . 7
| |
| 3 | 1, 2 | letr 137 |
. . . . . 6
|
| 4 | 3 | lecom 180 |
. . . . 5
|
| 5 | 4 | comcom 453 |
. . . 4
|
| 6 | comor1 461 |
. . . . 5
| |
| 7 | 6 | comcom7 460 |
. . . 4
|
| 8 | 5, 7 | fh1 469 |
. . 3
|
| 9 | 8 | ax-r1 35 |
. 2
|
| 10 | dfb 94 |
. . 3
| |
| 11 | ax-a2 31 |
. . 3
| |
| 12 | leid 148 |
. . . . . 6
| |
| 13 | 3, 12 | ler2an 173 |
. . . . 5
|
| 14 | lear 161 |
. . . . 5
| |
| 15 | 13, 14 | lebi 145 |
. . . 4
|
| 16 | dff 101 |
. . . . . . 7
| |
| 17 | ancom 74 |
. . . . . . 7
| |
| 18 | 16, 17 | ax-r2 36 |
. . . . . 6
|
| 19 | 18 | ax-r5 38 |
. . . . 5
|
| 20 | lea 160 |
. . . . . . . 8
| |
| 21 | 20 | df2le2 136 |
. . . . . . 7
|
| 22 | 21 | ax-r1 35 |
. . . . . 6
|
| 23 | or0r 103 |
. . . . . . 7
| |
| 24 | 23 | ax-r1 35 |
. . . . . 6
|
| 25 | 22, 24 | ax-r2 36 |
. . . . 5
|
| 26 | comid 187 |
. . . . . . 7
| |
| 27 | 26 | comcom2 183 |
. . . . . 6
|
| 28 | comanr1 464 |
. . . . . 6
| |
| 29 | 27, 28 | fh1r 473 |
. . . . 5
|
| 30 | 19, 25, 29 | 3tr1 63 |
. . . 4
|
| 31 | 15, 30 | 2or 72 |
. . 3
|
| 32 | 10, 11, 31 | 3tr 65 |
. 2
|
| 33 | df-i1 44 |
. . . 4
| |
| 34 | lear 161 |
. . . . . 6
| |
| 35 | leid 148 |
. . . . . . 7
| |
| 36 | 20, 35 | ler2an 173 |
. . . . . 6
|
| 37 | 34, 36 | lebi 145 |
. . . . 5
|
| 38 | 37 | lor 70 |
. . . 4
|
| 39 | 33, 38 | ax-r2 36 |
. . 3
|
| 40 | df-i1 44 |
. . . 4
| |
| 41 | anor3 90 |
. . . . . 6
| |
| 42 | 41 | ax-r1 35 |
. . . . 5
|
| 43 | lear 161 |
. . . . . 6
| |
| 44 | leo 158 |
. . . . . . 7
| |
| 45 | leid 148 |
. . . . . . 7
| |
| 46 | 44, 45 | ler2an 173 |
. . . . . 6
|
| 47 | 43, 46 | lebi 145 |
. . . . 5
|
| 48 | 42, 47 | 2or 72 |
. . . 4
|
| 49 | 40, 48 | ax-r2 36 |
. . 3
|
| 50 | 39, 49 | 2an 79 |
. 2
|
| 51 | 9, 32, 50 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: mlaconj 845 |
| Copyright terms: Public domain | W3C validator |