| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > com3iia | Unicode version | ||
| Description: The dual of com3ii 457. (Contributed by Roy F. Longton, 3-Jul-05.) |
| Ref | Expression |
|---|---|
| com3iia.1 |
|
| Ref | Expression |
|---|---|
| com3iia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comid 187 |
. . . 4
| |
| 2 | 1 | comcom2 183 |
. . 3
|
| 3 | com3iia.1 |
. . 3
| |
| 4 | 2, 3 | fh3 471 |
. 2
|
| 5 | lear 161 |
. . 3
| |
| 6 | ax-a4 33 |
. . . . 5
| |
| 7 | 6 | df-le1 130 |
. . . 4
|
| 8 | leid 148 |
. . . 4
| |
| 9 | 7, 8 | ler2an 173 |
. . 3
|
| 10 | 5, 9 | lebi 145 |
. 2
|
| 11 | 4, 10 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |