| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > comanblem1 | Unicode version | ||
| Description: Lemma for biconditional commutation law. |
| Ref | Expression |
|---|---|
| comanblem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 86 |
. 2
| |
| 2 | u1lembi 720 |
. . 3
| |
| 3 | u1lembi 720 |
. . 3
| |
| 4 | 2, 3 | 2an 79 |
. 2
|
| 5 | an32 83 |
. . 3
| |
| 6 | df-i1 44 |
. . . . . . . 8
| |
| 7 | df-i1 44 |
. . . . . . . 8
| |
| 8 | 6, 7 | 2an 79 |
. . . . . . 7
|
| 9 | comanr1 464 |
. . . . . . . . . 10
| |
| 10 | 9 | comcom3 454 |
. . . . . . . . 9
|
| 11 | comanr1 464 |
. . . . . . . . . 10
| |
| 12 | 11 | comcom3 454 |
. . . . . . . . 9
|
| 13 | 10, 12 | fh3 471 |
. . . . . . . 8
|
| 14 | 13 | ax-r1 35 |
. . . . . . 7
|
| 15 | 8, 14 | ax-r2 36 |
. . . . . 6
|
| 16 | 15 | lan 77 |
. . . . 5
|
| 17 | df-i1 44 |
. . . . . 6
| |
| 18 | 17 | ran 78 |
. . . . 5
|
| 19 | lea 160 |
. . . . . . . . 9
| |
| 20 | ancom 74 |
. . . . . . . . . 10
| |
| 21 | leor 159 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | bltr 138 |
. . . . . . . . 9
|
| 23 | 19, 22 | letr 137 |
. . . . . . . 8
|
| 24 | 23 | lecom 180 |
. . . . . . 7
|
| 25 | 10, 12 | com2an 484 |
. . . . . . . 8
|
| 26 | 25 | comcom 453 |
. . . . . . 7
|
| 27 | 24, 26 | fh2c 477 |
. . . . . 6
|
| 28 | coman2 186 |
. . . . . . . . . 10
| |
| 29 | 28 | comcom2 183 |
. . . . . . . . 9
|
| 30 | coman1 185 |
. . . . . . . . . 10
| |
| 31 | 30 | comcom2 183 |
. . . . . . . . 9
|
| 32 | 29, 31 | fh2rc 480 |
. . . . . . . 8
|
| 33 | anass 76 |
. . . . . . . . . 10
| |
| 34 | dff 101 |
. . . . . . . . . . . 12
| |
| 35 | 34 | lan 77 |
. . . . . . . . . . 11
|
| 36 | 35 | ax-r1 35 |
. . . . . . . . . 10
|
| 37 | an0 108 |
. . . . . . . . . 10
| |
| 38 | 33, 36, 37 | 3tr 65 |
. . . . . . . . 9
|
| 39 | 38 | lor 70 |
. . . . . . . 8
|
| 40 | or0 102 |
. . . . . . . . 9
| |
| 41 | anor3 90 |
. . . . . . . . 9
| |
| 42 | 40, 41 | ax-r2 36 |
. . . . . . . 8
|
| 43 | 32, 39, 42 | 3tr 65 |
. . . . . . 7
|
| 44 | ancom 74 |
. . . . . . . . . 10
| |
| 45 | comanr1 464 |
. . . . . . . . . 10
| |
| 46 | 44, 45 | bctr 181 |
. . . . . . . . 9
|
| 47 | 46, 31 | fh2rc 480 |
. . . . . . . 8
|
| 48 | anandi 114 |
. . . . . . . . . . . 12
| |
| 49 | 48 | ax-r1 35 |
. . . . . . . . . . 11
|
| 50 | ancom 74 |
. . . . . . . . . . 11
| |
| 51 | 49, 50 | ax-r2 36 |
. . . . . . . . . 10
|
| 52 | 51 | lan 77 |
. . . . . . . . 9
|
| 53 | 51 | lan 77 |
. . . . . . . . . 10
|
| 54 | ancom 74 |
. . . . . . . . . 10
| |
| 55 | lea 160 |
. . . . . . . . . . . 12
| |
| 56 | 55 | leran 153 |
. . . . . . . . . . 11
|
| 57 | 56 | df2le2 136 |
. . . . . . . . . 10
|
| 58 | 53, 54, 57 | 3tr 65 |
. . . . . . . . 9
|
| 59 | 52, 58 | 2or 72 |
. . . . . . . 8
|
| 60 | lear 161 |
. . . . . . . . 9
| |
| 61 | 60 | df-le2 131 |
. . . . . . . 8
|
| 62 | 47, 59, 61 | 3tr 65 |
. . . . . . 7
|
| 63 | 43, 62 | 2or 72 |
. . . . . 6
|
| 64 | 27, 63 | ax-r2 36 |
. . . . 5
|
| 65 | 16, 18, 64 | 3tr 65 |
. . . 4
|
| 66 | 65 | ran 78 |
. . 3
|
| 67 | 5, 66 | ax-r2 36 |
. 2
|
| 68 | 1, 4, 67 | 3tr2 64 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: comanb 872 |
| Copyright terms: Public domain | W3C validator |