| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > comanblem2 | Unicode version | ||
| Description: Lemma for biconditional commutation law. |
| Ref | Expression |
|---|---|
| comanblem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfb 94 |
. . . 4
| |
| 2 | dfb 94 |
. . . 4
| |
| 3 | 1, 2 | 2an 79 |
. . 3
|
| 4 | 3 | lan 77 |
. 2
|
| 5 | comanr1 464 |
. . . . . 6
| |
| 6 | comanr1 464 |
. . . . . . 7
| |
| 7 | 6 | comcom6 459 |
. . . . . 6
|
| 8 | 5, 7 | fh1 469 |
. . . . 5
|
| 9 | anass 76 |
. . . . . . . 8
| |
| 10 | 9 | ax-r1 35 |
. . . . . . 7
|
| 11 | anidm 111 |
. . . . . . . 8
| |
| 12 | 11 | ran 78 |
. . . . . . 7
|
| 13 | 10, 12 | ax-r2 36 |
. . . . . 6
|
| 14 | dff 101 |
. . . . . . . . 9
| |
| 15 | 14 | ran 78 |
. . . . . . . 8
|
| 16 | 15 | ax-r1 35 |
. . . . . . 7
|
| 17 | anass 76 |
. . . . . . 7
| |
| 18 | an0r 109 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | 3tr2 64 |
. . . . . 6
|
| 20 | 13, 19 | 2or 72 |
. . . . 5
|
| 21 | or0 102 |
. . . . 5
| |
| 22 | 8, 20, 21 | 3tr 65 |
. . . 4
|
| 23 | comanr1 464 |
. . . . . 6
| |
| 24 | comanr1 464 |
. . . . . . 7
| |
| 25 | 24 | comcom6 459 |
. . . . . 6
|
| 26 | 23, 25 | fh1 469 |
. . . . 5
|
| 27 | anass 76 |
. . . . . . . 8
| |
| 28 | 27 | ax-r1 35 |
. . . . . . 7
|
| 29 | anidm 111 |
. . . . . . . 8
| |
| 30 | 29 | ran 78 |
. . . . . . 7
|
| 31 | 28, 30 | ax-r2 36 |
. . . . . 6
|
| 32 | dff 101 |
. . . . . . . . 9
| |
| 33 | 32 | ran 78 |
. . . . . . . 8
|
| 34 | 33 | ax-r1 35 |
. . . . . . 7
|
| 35 | anass 76 |
. . . . . . 7
| |
| 36 | 34, 35, 18 | 3tr2 64 |
. . . . . 6
|
| 37 | 31, 36 | 2or 72 |
. . . . 5
|
| 38 | or0 102 |
. . . . 5
| |
| 39 | 26, 37, 38 | 3tr 65 |
. . . 4
|
| 40 | 22, 39 | 2an 79 |
. . 3
|
| 41 | an4 86 |
. . 3
| |
| 42 | anandir 115 |
. . 3
| |
| 43 | 40, 41, 42 | 3tr1 63 |
. 2
|
| 44 | 4, 43 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: comanb 872 |
| Copyright terms: Public domain | W3C validator |