| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > comm0 | Unicode version | ||
| Description: Commutation with 0. Kalmbach 83 p. 20. |
| Ref | Expression |
|---|---|
| comm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 |
. . . . 5
| |
| 2 | or0 102 |
. . . . 5
| |
| 3 | 1, 2 | ax-r2 36 |
. . . 4
|
| 4 | 3 | ax-r1 35 |
. . 3
|
| 5 | an0 108 |
. . . . 5
| |
| 6 | df-f 42 |
. . . . . . . 8
| |
| 7 | 6 | con2 67 |
. . . . . . 7
|
| 8 | 7 | lan 77 |
. . . . . 6
|
| 9 | an1 106 |
. . . . . 6
| |
| 10 | 8, 9 | ax-r2 36 |
. . . . 5
|
| 11 | 5, 10 | 2or 72 |
. . . 4
|
| 12 | 11 | ax-r1 35 |
. . 3
|
| 13 | 4, 12 | ax-r2 36 |
. 2
|
| 14 | 13 | df-c1 132 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-c1 132 |
| This theorem is referenced by: wcom0 407 |
| Copyright terms: Public domain | W3C validator |