QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  dp53lemg Unicode version

Theorem dp53lemg 1167
Description: Part of proof (5)=>(3) in Day/Pickering 1982.
Hypotheses
Ref Expression
dp53lem.1 c0 = ((a1 v a2) ^ (b1 v b2))
dp53lem.2 c1 = ((a0 v a2) ^ (b0 v b2))
dp53lem.3 c2 = ((a0 v a1) ^ (b0 v b1))
dp53lem.4 p0 = ((a1 v b1) ^ (a2 v b2))
dp53lem.5 p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))
Assertion
Ref Expression
dp53lemg p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))

Proof of Theorem dp53lemg
StepHypRef Expression
1 leor 159 . 2 p =< (a0 v p)
2 dp53lem.1 . . 3 c0 = ((a1 v a2) ^ (b1 v b2))
3 dp53lem.2 . . 3 c1 = ((a0 v a2) ^ (b0 v b2))
4 dp53lem.3 . . 3 c2 = ((a0 v a1) ^ (b0 v b1))
5 dp53lem.4 . . 3 p0 = ((a1 v b1) ^ (a2 v b2))
6 dp53lem.5 . . 3 p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))
72, 3, 4, 5, 6dp53lemf 1166 . 2 (a0 v p) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
81, 7letr 137 1 p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
Colors of variables: term
Syntax hints:   = wb 1   =< wle 2   v wo 6   ^ wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1120  ax-arg 1151
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  dp53  1168
  Copyright terms: Public domain W3C validator