[Lattice L46-7]Home PageHome Quantum Logic Explorer
Theorem List (p. 12 of 13)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  QLE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for Quantum Logic Explorer - 1101-1200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlem4.6.7 1101 Equation 4.15 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 3-Jul-05.)
a' =< b   =>   b =< (a ->1 b)
 
0.8  Weakly distributive ortholattices (WDOL)
 
0.8.1  WDOL law
 
Axiomax-wdol 1102 The WDOL (weakly distributive ortholattice) axiom.
((a == b) v (a == b')) = 1
 
Theoremwdcom 1103 Any two variables (weakly) commute in a WDOL.
C (a, b) = 1
 
Theoremwdwom 1104 Prove 2-variable WOML rule in WDOL. This will make all WOML theorems available to us. The proof does not use ax-r3 439 or ax-wom 361. Since this is the same as ax-wom 361, from here on we will freely use those theorems invoking ax-wom 361.
(a' v (a ^ b)) = 1   =>   (b v (a' ^ b')) = 1
 
Theoremwddi1 1105 Prove the weak distributive law in WDOL. This is our first WDOL theorem making use of ax-wom 361, which is justified by wdwom 1104.
((a ^ (b v c)) == ((a ^ b) v (a ^ c))) = 1
 
Theoremwddi2 1106 The weak distributive law in WDOL.
(((a v b) ^ c) == ((a ^ c) v (b ^ c))) = 1
 
Theoremwddi3 1107 The weak distributive law in WDOL.
((a v (b ^ c)) == ((a v b) ^ (a v c))) = 1
 
Theoremwddi4 1108 The weak distributive law in WDOL.
(((a ^ b) v c) == ((a v c) ^ (b v c))) = 1
 
Theoremwdid0id5 1109 Show that quantum identity follows from classical identity in a WDOL.
(a ==0 b) = 1   =>   (a == b) = 1
 
Theoremwdid0id1 1110 Show a quantum identity that follows from classical identity in a WDOL.
(a ==0 b) = 1   =>   (a ==1 b) = 1
 
Theoremwdid0id2 1111 Show a quantum identity that follows from classical identity in a WDOL.
(a ==0 b) = 1   =>   (a ==2 b) = 1
 
Theoremwdid0id3 1112 Show a quantum identity that follows from classical identity in a WDOL.
(a ==0 b) = 1   =>   (a ==3 b) = 1
 
Theoremwdid0id4 1113 Show a quantum identity that follows from classical identity in a WDOL.
(a ==0 b) = 1   =>   (a ==4 b) = 1
 
Theoremwdka4o 1114 Show WDOL analog of WOM law.
(a ==0 b) = 1   =>   ((a v c) ==0 (b v c)) = 1
 
Theoremwddi-0 1115 The weak distributive law in WDOL.
((a ^ (b v c)) ==0 ((a ^ b) v (a ^ c))) = 1
 
Theoremwddi-1 1116 The weak distributive law in WDOL.
((a ^ (b v c)) ==1 ((a ^ b) v (a ^ c))) = 1
 
Theoremwddi-2 1117 The weak distributive law in WDOL.
((a ^ (b v c)) ==2 ((a ^ b) v (a ^ c))) = 1
 
Theoremwddi-3 1118 The weak distributive law in WDOL.
((a ^ (b v c)) ==3 ((a ^ b) v (a ^ c))) = 1
 
Theoremwddi-4 1119 The weak distributive law in WDOL.
((a ^ (b v c)) ==4 ((a ^ b) v (a ^ c))) = 1
 
0.9  Modular ortholattices (MOL)
 
0.9.1  Modular law
 
Axiomax-ml 1120 The modular law axiom.
((a v b) ^ (a v c)) =< (a v (b ^ (a v c)))
 
Theoremml 1121 Modular law in equational form.
(a v (b ^ (a v c))) = ((a v b) ^ (a v c))
 
Theoremmldual 1122 Dual of modular law.
(a ^ (b v (a ^ c))) = ((a ^ b) v (a ^ c))
 
Theoremml2i 1123 Inference version of modular law.
c =< a   =>   (c v (b ^ a)) = ((c v b) ^ a)
 
Theoremmli 1124 Inference version of modular law.
c =< a   =>   ((a ^ b) v c) = (a ^ (b v c))
 
Theoremmldual2i 1125 Inference version of dual of modular law.
a =< c   =>   (c ^ (b v a)) = ((c ^ b) v a)
 
Theoremmlduali 1126 Inference version of dual of modular law.
a =< c   =>   ((a v b) ^ c) = (a v (b ^ c))
 
Theoremml3le 1127 Form of modular law that swaps two terms.
(a v (b ^ (c v a))) =< (a v (c ^ (b v a)))
 
Theoremml3 1128 Form of modular law that swaps two terms.
(a v (b ^ (c v a))) = (a v (c ^ (b v a)))
 
Theoremvneulem1 1129 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
(((x v y) v u) ^ w) = (((x v y) v u) ^ ((u v w) ^ w))
 
Theoremvneulem2 1130 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
(((x v y) v u) ^ ((u v w) ^ w)) = ((((x v y) ^ (u v w)) v u) ^ w)
 
Theoremvneulem3 1131 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((x v y) ^ (u v w)) = 0   =>   ((((x v y) ^ (u v w)) v u) ^ w) = (u ^ w)
 
Theoremvneulem4 1132 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((x v y) ^ (u v w)) = 0   =>   (((x v y) v u) ^ w) = (u ^ w)
 
Theoremvneulem5 1133 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
(((x v y) v u) ^ ((x v y) v w)) = ((x v y) v (((x v y) v u) ^ w))
 
Theoremvneulem6 1134 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   (((a v b) v d) ^ ((b v c) v d)) = ((c ^ a) v (b v d))
 
Theoremvneulem7 1135 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   ((c ^ a) v (b v d)) = (b v d)
 
Theoremvneulem8 1136 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   (((a v b) v d) ^ ((b v c) v d)) = (b v d)
 
Theoremvneulem9 1137 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   (((a v b) v d) ^ ((a v b) v c)) = ((c ^ d) v (a v b))
 
Theoremvneulem10 1138 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   (((a v b) v c) ^ ((a v c) v d)) = (a v c)
 
Theoremvneulem11 1139 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   (((b v c) v d) ^ ((a v c) v d)) = ((c v d) v (a ^ b))
 
Theoremvneulem12 1140 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
(((c ^ d) v (a v b)) ^ ((c v d) v (a ^ b))) = ((c ^ d) v ((a v b) ^ ((c v d) v (a ^ b))))
 
Theoremvneulem13 1141 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   ((c ^ d) v ((a v b) ^ ((c v d) v (a ^ b)))) = ((c ^ d) v (a ^ b))
 
Theoremvneulem14 1142 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   (((c ^ d) v (a v b)) ^ ((c v d) v (a ^ b))) = ((c ^ d) v (a ^ b))
 
Theoremvneulem15 1143 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   ((a v c) ^ (b v d)) = ((((a v b) v c) ^ ((a v c) v d)) ^ (((a v b) v d) ^ ((b v c) v d)))
 
Theoremvneulem16 1144 Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   ((((a v b) v c) ^ ((a v c) v d)) ^ (((a v b) v d) ^ ((b v c) v d))) = ((a ^ b) v (c ^ d))
 
Theoremvneulem 1145 von Neumann's modular law lemma. Lemma 9, Kalmbach p. 96
((a v b) ^ (c v d)) = 0   =>   ((a v c) ^ (b v d)) = ((a ^ b) v (c ^ d))
 
Theoremvneulemexp 1146 Expanded version of vneulem 1145.
((a v b) ^ (c v d)) = 0   =>   ((a v c) ^ (b v d)) = ((a ^ b) v (c ^ d))
 
Theoreml42modlem1 1147 Lemma for l42mod 1149..
(((a v b) v d) ^ ((a v b) v e)) = ((a v b) v ((a v d) ^ (b v e)))
 
Theoreml42modlem2 1148 Lemma for l42mod 1149..
((((a v b) ^ c) v d) ^ e) =< (((a v b) v d) ^ ((a v b) v e))
 
Theoreml42mod 1149 An equation that fails in OML L42 when converted to a Hilbert space equation.
((((a v b) ^ c) v d) ^ e) =< ((a v b) v ((a v d) ^ (b v e)))
 
Theoremmodexp 1150 Expansion by modular law.
(a ^ (b v c)) = (a ^ (b v (c ^ (a v b))))
 
0.9.2  Arguesian law
 
Axiomax-arg 1151 The Arguesian law as an axiom.
((a0 v b0) ^ (a1 v b1)) =< (a2 v b2)   =>   ((a0 v a1) ^ (b0 v b1)) =< (((a0 v a2) ^ (b0 v b2)) v ((a1 v a2) ^ (b1 v b2)))
 
Theoremdp15lema 1152 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   =>   ((a0 v e) ^ (a1 v b1)) =< (d v b2)
 
Theoremdp15lemb 1153 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   =>   ((a0 v a1) ^ (e v b1)) =< (((a0 v d) ^ (e v b2)) v ((a1 v d) ^ (b1 v b2)))
 
Theoremdp15lemc 1154 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   =>   ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (((a0 v (a2 v (a0 ^ (a1 v b1)))) ^ ((b0 ^ (a0 v p0)) v b2)) v ((a1 v (a2 v (a0 ^ (a1 v b1)))) ^ (b1 v b2)))
 
Theoremdp15lemd 1155 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   =>   (((a0 v (a2 v (a0 ^ (a1 v b1)))) ^ ((b0 ^ (a0 v p0)) v b2)) v ((a1 v (a2 v (a0 ^ (a1 v b1)))) ^ (b1 v b2))) = (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (a0 ^ (a1 v b1))) ^ (b1 v b2)))
 
Theoremdp15leme 1156 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   =>   (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (a0 ^ (a1 v b1))) ^ (b1 v b2))) =< (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (b1 ^ (a0 v a1))) ^ (b1 v b2)))
 
Theoremdp15lemf 1157 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   =>   (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (b1 ^ (a0 v a1))) ^ (b1 v b2))) =< (((a1 v a2) ^ (b1 v b2)) v (((a0 v a2) ^ (b0 v b2)) v (b1 ^ (a0 v a1))))
 
Theoremdp15lemg 1158 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   &   c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   =>   (((a1 v a2) ^ (b1 v b2)) v (((a0 v a2) ^ (b0 v b2)) v (b1 ^ (a0 v a1)))) = ((c0 v c1) v (b1 ^ (a0 v a1)))
 
Theoremdp15lemh 1159 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   &   c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   =>   ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
 
Theoremdp15 1160 Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (1)=>(5)
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   p0 = ((a1 v b1) ^ (a2 v b2))   =>   ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
 
Theoremdp53lema 1161 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b1 v (b0 ^ (a0 v p0))) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
 
Theoremdp53lemb 1162 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (b1 v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
 
Theoremdp53lemc 1163 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v (c2 ^ (c0 v c1))))
 
Theoremdp53lemd 1164 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (a0 v p0)) =< (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))))
 
Theoremdp53leme 1165 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (a0 v p0)) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp53lemf 1166 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (a0 v p) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp53lemg 1167 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp53 1168 Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (5)=>(3)
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp35lemg 1169 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp35lemf 1170 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (a0 v p) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp35leme 1171 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (a0 v p0)) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp35lemd 1172 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (a0 v p0)) =< (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))))
 
Theoremdp35lemc 1173 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v (c2 ^ (c0 v c1))))
 
Theoremdp35lemb 1174 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (b1 v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
 
Theoremdp35lembb 1175 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b0 ^ (a0 v p0)) =< (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
 
Theoremdp35lema 1176 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   (b1 v (b0 ^ (a0 v p0))) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
 
Theoremdp35lem0 1177 Part of proof (3)=>(5) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
 
Theoremdp35 1178 Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(5)
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   p0 = ((a1 v b1) ^ (a2 v b2))   =>   ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
 
Theoremdp34 1179 Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(4)
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   p =< ((a0 v b1) v (c2 ^ (c0 v c1)))
 
Theoremdp41lema 1180 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   ((a0 v b0) ^ (a1 v b1)) =< ((a0 v b1) v (c2 ^ (c0 v c1)))
 
Theoremdp41lemb 1181 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   c2 = ((c2 ^ ((a0 v b0) v b1)) ^ ((a0 v a1) v b1))
 
Theoremdp41lemc0 1182 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   (((a0 v b0) v b1) ^ ((a0 v a1) v b1)) = ((a0 v b1) v ((a0 v b0) ^ (a1 v b1)))
 
Theoremdp41lemc 1183 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   ((c2 ^ ((a0 v b0) v b1)) ^ ((a0 v a1) v b1)) =< (c2 ^ ((a0 v b1) v (c2 ^ (c0 v c1))))
 
Theoremdp41lemd 1184 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   (c2 ^ ((a0 v b1) v (c2 ^ (c0 v c1)))) = (c2 ^ ((c0 v c1) v (c2 ^ (a0 v b1))))
 
Theoremdp41leme 1185 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   (c2 ^ ((c0 v c1) v (c2 ^ (a0 v b1)))) =< ((c0 v c1) v ((a0 ^ (b0 v b1)) v (b1 ^ (a0 v a1))))
 
Theoremdp41lemf 1186 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   ((c0 v c1) v ((a0 ^ (b0 v b1)) v (b1 ^ (a0 v a1)))) = (((b1 v b2) ^ ((a1 v a2) v (b1 ^ (a0 v a1)))) v ((a0 v a2) ^ ((b0 v b2) v (a0 ^ (b0 v b1)))))
 
Theoremdp41lemg 1187 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   (((b1 v b2) ^ ((a1 v a2) v (b1 ^ (a0 v a1)))) v ((a0 v a2) ^ ((b0 v b2) v (a0 ^ (b0 v b1))))) = (((b1 v b2) ^ ((a1 v a2) v (a0 ^ (a1 v b1)))) v ((a0 v a2) ^ ((b0 v b2) v (b1 ^ (a0 v b0)))))
 
Theoremdp41lemh 1188 Part of proof (4)=>(1) in Day/Pickering 1982. "By CP(a,b)".
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   (((b1 v b2) ^ ((a1 v a2) v (a0 ^ (a1 v b1)))) v ((a0 v a2) ^ ((b0 v b2) v (b1 ^ (a0 v b0))))) =< (((b1 v b2) ^ ((a1 v a2) v (a0 ^ (a2 v b2)))) v ((a0 v a2) ^ ((b0 v b2) v (b1 ^ (a2 v b2)))))
 
Theoremdp41lemj 1189 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   (((b1 v b2) ^ ((a1 v a2) v (a0 ^ (a2 v b2)))) v ((a0 v a2) ^ ((b0 v b2) v (b1 ^ (a2 v b2))))) = (((b1 v b2) ^ ((a1 v a2) v (b2 ^ (a0 v a2)))) v ((a0 v a2) ^ ((b0 v b2) v (a2 ^ (b1 v b2)))))
 
Theoremdp41lemk 1190 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   (((b1 v b2) ^ ((a1 v a2) v (b2 ^ (a0 v a2)))) v ((a0 v a2) ^ ((b0 v b2) v (a2 ^ (b1 v b2))))) = ((c0 v (b2 ^ (a0 v a2))) v (c1 v (a2 ^ (b1 v b2))))
 
Theoremdp41leml 1191 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   ((c0 v (b2 ^ (a0 v a2))) v (c1 v (a2 ^ (b1 v b2)))) = (c0 v c1)
 
Theoremdp41lemm 1192 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   c2 =< (c0 v c1)
 
Theoremdp41 1193 Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (4)=>(1)
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   c2 =< (c0 v c1)
 
Theoremdp32 1194 Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(2)
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   p =< ((a0 ^ (a1 v (c2 ^ (c0 v c1)))) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremdp23 1195 Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (2)=>(3)
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremxdp41 1196 Part of proof (4)=>(1) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   &   p2 =< (a2 v b2)   =>   c2 =< (c0 v c1)
 
Theoremxdp15 1197 Part of proof (1)=>(5) in Day/Pickering 1982.
d = (a2 v (a0 ^ (a1 v b1)))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   e = (b0 ^ (a0 v p0))   &   c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   =>   ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
 
Theoremxdp53 1198 Part of proof (5)=>(3) in Day/Pickering 1982.
c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   =>   p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
 
Theoremxxdp41 1199 Part of proof (4)=>(1) in Day/Pickering 1982.
p2 =< (a2 v b2)   &   c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   d = (a2 v (a0 ^ (a1 v b1)))   &   e = (b0 ^ (a0 v p0))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   =>   c2 =< (c0 v c1)
 
Theoremxxdp15 1200 Part of proof (1)=>(5) in Day/Pickering 1982.
p2 =< (a2 v b2)   &   c0 = ((a1 v a2) ^ (b1 v b2))   &   c1 = ((a0 v a2) ^ (b0 v b2))   &   c2 = ((a0 v a1) ^ (b0 v b1))   &   d = (a2 v (a0 ^ (a1 v b1)))   &   e = (b0 ^ (a0 v p0))   &   p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))   &   p0 = ((a1 v b1) ^ (a2 v b2))   &   p2 = ((a0 v b0) ^ (a1 v b1))   =>   ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1215
  Copyright terms: Public domain < Previous  Next >