Theorem List for Quantum Logic Explorer - 1101-1200 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | lem4.6.7 1101 |
Equation 4.15 of [MegPav2000] p. 23.
(Contributed by Roy F. Longton,
3-Jul-05.)
|

   |
|
0.8 Weakly distributive ortholattices
(WDOL)
|
|
0.8.1 WDOL law
|
|
Axiom | ax-wdol 1102 |
The WDOL (weakly distributive ortholattice) axiom.
|
        |
|
Theorem | wdcom 1103 |
Any two variables (weakly) commute in a WDOL.
|
    |
|
Theorem | wdwom 1104 |
Prove 2-variable WOML rule in WDOL. This will make all WOML theorems
available to us. The proof does not use ax-r3 439
or ax-wom 361. Since
this is the same as ax-wom 361, from here on we will freely use those
theorems invoking ax-wom 361.
|
            |
|
Theorem | wddi1 1105 |
Prove the weak distributive law in WDOL. This is our first WDOL theorem
making use of ax-wom 361, which is justified by wdwom 1104.
|
             |
|
Theorem | wddi2 1106 |
The weak distributive law in WDOL.
|
             |
|
Theorem | wddi3 1107 |
The weak distributive law in WDOL.
|
             |
|
Theorem | wddi4 1108 |
The weak distributive law in WDOL.
|
             |
|
Theorem | wdid0id5 1109 |
Show that quantum identity follows from classical identity in a WDOL.
|
 
 
 |
|
Theorem | wdid0id1 1110 |
Show a quantum identity that follows from classical identity in a
WDOL.
|
 
 
 |
|
Theorem | wdid0id2 1111 |
Show a quantum identity that follows from classical identity in a
WDOL.
|
 
 
 |
|
Theorem | wdid0id3 1112 |
Show a quantum identity that follows from classical identity in a
WDOL.
|
 
 
 |
|
Theorem | wdid0id4 1113 |
Show a quantum identity that follows from classical identity in a
WDOL.
|
 
 
 |
|
Theorem | wdka4o 1114 |
Show WDOL analog of WOM law.
|
 
   
 
 |
|
Theorem | wddi-0 1115 |
The weak distributive law in WDOL.
|
             |
|
Theorem | wddi-1 1116 |
The weak distributive law in WDOL.
|
             |
|
Theorem | wddi-2 1117 |
The weak distributive law in WDOL.
|
             |
|
Theorem | wddi-3 1118 |
The weak distributive law in WDOL.
|
             |
|
Theorem | wddi-4 1119 |
The weak distributive law in WDOL.
|
             |
|
0.9 Modular ortholattices
(MOL)
|
|
0.9.1 Modular law
|
|
Axiom | ax-ml 1120 |
The modular law axiom.
|
             |
|
Theorem | ml 1121 |
Modular law in equational form.
|
             |
|
Theorem | mldual 1122 |
Dual of modular law.
|
             |
|
Theorem | ml2i 1123 |
Inference version of modular law.
|
         |
|
Theorem | mli 1124 |
Inference version of modular law.
|
         |
|
Theorem | mldual2i 1125 |
Inference version of dual of modular law.
|
         |
|
Theorem | mlduali 1126 |
Inference version of dual of modular law.
|
         |
|
Theorem | ml3le 1127 |
Form of modular law that swaps two terms.
|
             |
|
Theorem | ml3 1128 |
Form of modular law that swaps two terms.
|
             |
|
Theorem | vneulem1 1129 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
     
  

       |
|
Theorem | vneulem2 1130 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
       
 
           |
|
Theorem | vneulem3 1131 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
               
   |
|
Theorem | vneulem4 1132 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
           
   |
|
Theorem | vneulem5 1133 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                     |
|
Theorem | vneulem6 1134 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                       |
|
Theorem | vneulem7 1135 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
               |
|
Theorem | vneulem8 1136 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                   |
|
Theorem | vneulem9 1137 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                       |
|
Theorem | vneulem10 1138 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                   |
|
Theorem | vneulem11 1139 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                       |
|
Theorem | vneulem12 1140 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                             |
|
Theorem | vneulem13 1141 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                           |
|
Theorem | vneulem14 1142 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                           |
|
Theorem | vneulem15 1143 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                                   |
|
Theorem | vneulem16 1144 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96
|
                                   |
|
Theorem | vneulem 1145 |
von Neumann's modular law lemma. Lemma 9, Kalmbach p. 96
|
                   |
|
Theorem | vneulemexp 1146 |
Expanded version of vneulem 1145.
|
                   |
|
Theorem | l42modlem1 1147 |
Lemma for l42mod 1149..
|
                     |
|
Theorem | l42modlem2 1148 |
Lemma for l42mod 1149..
|
                   |
|
Theorem | l42mod 1149 |
An equation that fails in OML L42 when converted to a Hilbert space
equation.
|
                   |
|
Theorem | modexp 1150 |
Expansion by modular law.
|
             |
|
0.9.2 Arguesian law
|
|
Axiom | ax-arg 1151 |
The Arguesian law as an axiom.
|
 a0 b0
a1 b1 a2 b2  a0 a1 b0 b1   a0 a2
b0 b2  a1 a2 b1 b2   |
|
Theorem | dp15lema 1152 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0  a0  a1
b1 
b2 |
|
Theorem | dp15lemb 1153 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0  a0 a1
 b1   a0

 b2  a1  b1 b2   |
|
Theorem | dp15lemc 1154 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0  a0 a1
 b0 a0 p0 b1   a0 a2 a0
a1 b1    b0 a0 p0 b2  a1 a2 a0
a1 b1   b1
b2   |
|
Theorem | dp15lemd 1155 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0   a0 a2 a0 a1
b1    b0 a0 p0 b2  a1 a2 a0
a1 b1   b1
b2    a0 a2  b0 a0 p0 b2   a1 a2 a0 a1 b1  b1 b2   |
|
Theorem | dp15leme 1156 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0   a0 a2  b0 a0 p0 b2   a1 a2 a0 a1 b1  b1 b2    a0 a2  b0 a0 p0 b2   a1 a2 b1 a0 a1  b1 b2   |
|
Theorem | dp15lemf 1157 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0   a0 a2  b0 a0 p0 b2   a1 a2 b1 a0 a1  b1 b2    a1 a2 b1 b2   a0 a2 b0 b2 b1
a0 a1    |
|
Theorem | dp15lemg 1158 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0 c0
 a1 a2
b1 b2 c1  a0 a2 b0 b2   a1 a2 b1 b2   a0 a2 b0 b2 b1
a0 a1    c0 c1
b1 a0 a1   |
|
Theorem | dp15lemh 1159 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0 c0
 a1 a2
b1 b2 c1  a0 a2 b0 b2  a0 a1
 b0 a0 p0 b1  c0 c1
b1 a0 a1   |
|
Theorem | dp15 1160 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305
(1982). (1)=>(5)
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 p0  a1 b1 a2 b2  a0 a1
 b0 a0 p0 b1  c0 c1
b1 a0 a1   |
|
Theorem | dp53lema 1161 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b1
b0 a0 p0  b1  a0 a1
c0 c1   |
|
Theorem | dp53lemb 1162 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
b1 c2 c0 c1   b0 b1  a0 a1
c0 c1    |
|
Theorem | dp53lemc 1163 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
  a0 b0
b1 c2 c0 c1   b0 b1 c2 c0
c1    |
|
Theorem | dp53lemd 1164 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
a0 p0 b0   a0
b0
b1 c2 c0 c1    |
|
Theorem | dp53leme 1165 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
a0 p0 a0 b0 b1 c2
c0 c1     |
|
Theorem | dp53lemf 1166 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 a0

a0 b0 b1 c2
c0 c1     |
|
Theorem | dp53lemg 1167 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 a0 b0 b1 c2
c0 c1     |
|
Theorem | dp53 1168 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305
(1982). (5)=>(3)
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 a0 b0 b1 c2
c0 c1     |
|
Theorem | dp35lemg 1169 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 a0 b0 b1 c2
c0 c1     |
|
Theorem | dp35lemf 1170 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 a0

a0 b0 b1 c2
c0 c1     |
|
Theorem | dp35leme 1171 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
a0 p0 a0 b0 b1 c2
c0 c1     |
|
Theorem | dp35lemd 1172 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
a0 p0 b0   a0
b0
b1 c2 c0 c1    |
|
Theorem | dp35lemc 1173 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
  a0 b0
b1 c2 c0 c1   b0 b1 c2 c0
c1    |
|
Theorem | dp35lemb 1174 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
b1 c2 c0 c1   b0 b1  a0 a1
c0 c1    |
|
Theorem | dp35lembb 1175 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b0
a0 p0 b0 b1  a0 a1
c0 c1    |
|
Theorem | dp35lema 1176 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 b1
b0 a0 p0  b1  a0 a1
c0 c1   |
|
Theorem | dp35lem0 1177 |
Part of proof (3)=>(5) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2  a0 a1
 b0 a0 p0 b1  c0 c1
b1 a0 a1   |
|
Theorem | dp35 1178 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305
(1982). (3)=>(5)
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 p0  a1 b1 a2 b2  a0 a1
 b0 a0 p0 b1  c0 c1
b1 a0 a1   |
|
Theorem | dp34 1179 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305
(1982). (3)=>(4)
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2  a0 b1 c2 c0 c1   |
|
Theorem | dp41lema 1180 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2  a0 b0 a1 b1  a0 b1
c2 c0 c1   |
|
Theorem | dp41lemb 1181 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2 c2
 c2  a0 b0
b1  a0
a1
b1  |
|
Theorem | dp41lemc0 1182 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2   a0 b0 b1
 a0 a1 b1  a0 b1
 a0 b0 a1 b1   |
|
Theorem | dp41lemc 1183 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2  c2  a0 b0 b1  a0 a1
b1 c2  a0 b1 c2 c0 c1    |
|
Theorem | dp41lemd 1184 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2 c2  a0 b1
c2 c0 c1   c2  c0 c1 c2 a0 b1    |
|
Theorem | dp41leme 1185 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2 c2  c0 c1
c2 a0 b1    c0 c1  a0 b0 b1 b1
a0 a1    |
|
Theorem | dp41lemf 1186 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2  c0 c1  a0 b0 b1 b1
a0 a1     b1 b2  a1 a2 b1 a0 a1    a0 a2  b0 b2 a0 b0 b1     |
|
Theorem | dp41lemg 1187 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2   b1 b2  a1 a2 b1 a0 a1    a0 a2  b0 b2 a0 b0 b1      b1 b2
 a1 a2 a0 a1 b1    a0 a2  b0 b2 b1 a0 b0     |
|
Theorem | dp41lemh 1188 |
Part of proof (4)=>(1) in Day/Pickering 1982. "By CP(a,b)".
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2   b1 b2  a1 a2 a0 a1 b1    a0 a2  b0 b2 b1 a0 b0      b1 b2
 a1 a2 a0 a2 b2    a0 a2  b0 b2 b1 a2 b2     |
|
Theorem | dp41lemj 1189 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2   b1 b2  a1 a2 a0 a2 b2    a0 a2  b0 b2 b1 a2 b2      b1 b2
 a1 a2 b2 a0 a2    a0 a2  b0 b2 a2 b1 b2     |
|
Theorem | dp41lemk 1190 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2   b1 b2  a1 a2 b2 a0 a2    a0 a2  b0 b2 a2 b1 b2     c0
b2 a0 a2  c1 a2 b1
b2    |
|
Theorem | dp41leml 1191 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2  c0 b2 a0 a2  c1 a2 b1
b2   c0 c1 |
|
Theorem | dp41lemm 1192 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2 c2
c0 c1 |
|
Theorem | dp41 1193 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305
(1982). (4)=>(1)
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p2
 a0 b0
a1 b1 p2 a2 b2 c2 c0 c1 |
|
Theorem | dp32 1194 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305
(1982). (3)=>(2)
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2  a0 a1 c2 c0
c1   b0 b1 c2 c0
c1     |
|
Theorem | dp23 1195 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305
(1982). (2)=>(3)
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 a0 b0 b1 c2
c0 c1     |
|
Theorem | xdp41 1196 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1   a0 b0
a1 b1 a2 b2 p2  a0 b0 a1 b1 p2
a2 b2 c2
c0 c1 |
|
Theorem | xdp15 1197 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
a2 a0 a1 b1  p0
 a1 b1
a2 b2 b0 a0 p0 c0
 a1 a2
b1 b2 c1  a0 a2 b0 b2  a0 a1
 b0 a0 p0 b1  c0 c1
b1 a0 a1   |
|
Theorem | xdp53 1198 |
Part of proof (5)=>(3) in Day/Pickering 1982.
|
c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 p0
 a1 b1
a2 b2   a0
b0
a1 b1 a2 b2 a0 b0 b1 c2
c0 c1     |
|
Theorem | xxdp41 1199 |
Part of proof (4)=>(1) in Day/Pickering 1982.
|
p2 a2 b2 c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 a2 a0 a1 b1  b0 a0 p0   a0 b0
a1 b1 a2 b2 p0  a1 b1 a2 b2 p2
 a0 b0
a1 b1 c2 c0 c1 |
|
Theorem | xxdp15 1200 |
Part of proof (1)=>(5) in Day/Pickering 1982.
|
p2 a2 b2 c0  a1 a2 b1 b2 c1
 a0 a2
b0 b2 c2  a0 a1 b0 b1 a2 a0 a1 b1  b0 a0 p0   a0 b0
a1 b1 a2 b2 p0  a1 b1 a2 b2 p2
 a0 b0
a1 b1  a0 a1
 b0 a0 p0 b1  c0 c1
b1 a0 a1   |