| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > elimcons | Unicode version | ||
| Description: Consequent elimination law. |
| Ref | Expression |
|---|---|
| elimcons.1 |
|
| elimcons.2 |
|
| Ref | Expression |
|---|---|
| elimcons |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-t 41 |
. . . . . . . 8
| |
| 2 | elimcons.1 |
. . . . . . . . . 10
| |
| 3 | elimcons.2 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | elimconslem 867 |
. . . . . . . . 9
|
| 5 | 4 | leror 152 |
. . . . . . . 8
|
| 6 | 1, 5 | bltr 138 |
. . . . . . 7
|
| 7 | 6 | lelan 167 |
. . . . . 6
|
| 8 | an1 106 |
. . . . . 6
| |
| 9 | comor1 461 |
. . . . . . . 8
| |
| 10 | 9 | comcom2 183 |
. . . . . . 7
|
| 11 | 4 | lecom 180 |
. . . . . . . . 9
|
| 12 | 11 | comcom3 454 |
. . . . . . . 8
|
| 13 | 12 | comcom 453 |
. . . . . . 7
|
| 14 | 10, 13 | fh2 470 |
. . . . . 6
|
| 15 | 7, 8, 14 | le3tr2 141 |
. . . . 5
|
| 16 | 2 | negant 852 |
. . . . . . . . . . 11
|
| 17 | df-i1 44 |
. . . . . . . . . . 11
| |
| 18 | df-i1 44 |
. . . . . . . . . . 11
| |
| 19 | 16, 17, 18 | 3tr2 64 |
. . . . . . . . . 10
|
| 20 | anor2 89 |
. . . . . . . . . . 11
| |
| 21 | 20 | lor 70 |
. . . . . . . . . 10
|
| 22 | anor2 89 |
. . . . . . . . . . 11
| |
| 23 | 22 | lor 70 |
. . . . . . . . . 10
|
| 24 | 19, 21, 23 | 3tr2 64 |
. . . . . . . . 9
|
| 25 | 24 | ax-r1 35 |
. . . . . . . 8
|
| 26 | 25 | ax-r4 37 |
. . . . . . 7
|
| 27 | df-a 40 |
. . . . . . 7
| |
| 28 | df-a 40 |
. . . . . . 7
| |
| 29 | 26, 27, 28 | 3tr1 63 |
. . . . . 6
|
| 30 | 29 | ax-r5 38 |
. . . . 5
|
| 31 | 15, 30 | lbtr 139 |
. . . 4
|
| 32 | lear 161 |
. . . . 5
| |
| 33 | 32 | lelor 166 |
. . . 4
|
| 34 | 31, 33 | letr 137 |
. . 3
|
| 35 | lea 160 |
. . . 4
| |
| 36 | 35 | df-le2 131 |
. . 3
|
| 37 | 34, 36 | lbtr 139 |
. 2
|
| 38 | 37 | lecon1 155 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: elimcons2 869 |
| Copyright terms: Public domain | W3C validator |