| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > elimconslem | Unicode version | ||
| Description: Lemma for consequent elimination law. |
| Ref | Expression |
|---|---|
| elimcons.1 |
|
| elimcons.2 |
|
| Ref | Expression |
|---|---|
| elimconslem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-t 41 |
. . . . . . 7
| |
| 2 | elimcons.2 |
. . . . . . . . . 10
| |
| 3 | 2 | lecon 154 |
. . . . . . . . 9
|
| 4 | oran3 93 |
. . . . . . . . . 10
| |
| 5 | 4 | ax-r1 35 |
. . . . . . . . 9
|
| 6 | 3, 5 | lbtr 139 |
. . . . . . . 8
|
| 7 | 6 | lelor 166 |
. . . . . . 7
|
| 8 | 1, 7 | bltr 138 |
. . . . . 6
|
| 9 | 8 | lelan 167 |
. . . . 5
|
| 10 | an1 106 |
. . . . 5
| |
| 11 | comor1 461 |
. . . . . . 7
| |
| 12 | 11 | comcom7 460 |
. . . . . 6
|
| 13 | df-a 40 |
. . . . . . . . . 10
| |
| 14 | 13 | ax-r1 35 |
. . . . . . . . 9
|
| 15 | 14, 2 | bltr 138 |
. . . . . . . 8
|
| 16 | 15 | lecom 180 |
. . . . . . 7
|
| 17 | 16 | comcom6 459 |
. . . . . 6
|
| 18 | 12, 17 | fh2c 477 |
. . . . 5
|
| 19 | 9, 10, 18 | le3tr2 141 |
. . . 4
|
| 20 | elimcons.1 |
. . . . . . . . 9
| |
| 21 | df-i1 44 |
. . . . . . . . 9
| |
| 22 | df-i1 44 |
. . . . . . . . 9
| |
| 23 | 20, 21, 22 | 3tr2 64 |
. . . . . . . 8
|
| 24 | 13 | lor 70 |
. . . . . . . 8
|
| 25 | df-a 40 |
. . . . . . . . 9
| |
| 26 | 25 | lor 70 |
. . . . . . . 8
|
| 27 | 23, 24, 26 | 3tr2 64 |
. . . . . . 7
|
| 28 | 27 | ax-r4 37 |
. . . . . 6
|
| 29 | df-a 40 |
. . . . . 6
| |
| 30 | df-a 40 |
. . . . . 6
| |
| 31 | 28, 29, 30 | 3tr1 63 |
. . . . 5
|
| 32 | 31 | lor 70 |
. . . 4
|
| 33 | 19, 32 | lbtr 139 |
. . 3
|
| 34 | lear 161 |
. . . 4
| |
| 35 | 34 | leror 152 |
. . 3
|
| 36 | 33, 35 | letr 137 |
. 2
|
| 37 | ax-a2 31 |
. . 3
| |
| 38 | leao1 162 |
. . . 4
| |
| 39 | 38 | df-le2 131 |
. . 3
|
| 40 | 37, 39 | ax-r2 36 |
. 2
|
| 41 | 36, 40 | lbtr 139 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: elimcons 868 |
| Copyright terms: Public domain | W3C validator |