| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > go1 | Unicode version | ||
| Description: Lemma for proof of Mayet 8-variable "full" equation from 4-variable Godowski equation. |
| Ref | Expression |
|---|---|
| go1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 |
. . 3
| |
| 2 | 1 | lan 77 |
. 2
|
| 3 | lear 161 |
. . . . . 6
| |
| 4 | 3 | lelor 166 |
. . . . 5
|
| 5 | 4 | lelan 167 |
. . . 4
|
| 6 | oran3 93 |
. . . . . 6
| |
| 7 | 6 | lan 77 |
. . . . 5
|
| 8 | dff 101 |
. . . . . 6
| |
| 9 | 8 | ax-r1 35 |
. . . . 5
|
| 10 | 7, 9 | ax-r2 36 |
. . . 4
|
| 11 | 5, 10 | lbtr 139 |
. . 3
|
| 12 | le0 147 |
. . 3
| |
| 13 | 11, 12 | lebi 145 |
. 2
|
| 14 | 2, 13 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 |
| This theorem is referenced by: gomaex4 900 |
| Copyright terms: Public domain | W3C validator |